table of contents
        
      
      
    
      other versions
    
    - Tumbleweed 3.12.1-3.1
- Leap-16.0
| SRC/lapack_64_obj/slags2.f(3) | Library Functions Manual | SRC/lapack_64_obj/slags2.f(3) | 
NAME¶
SRC/lapack_64_obj/slags2.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine SLAGS2 (upper, a1, a2, a3, b1, b2, b3, csu, snu,
    csv, snv, csq, snq)
  
  SLAGS2 computes 2-by-2 orthogonal matrices U, V, and Q, and applies
    them to matrices A and B such that the rows of the transformed A and B are
    parallel.
  
Function/Subroutine Documentation¶
subroutine SLAGS2 (logical upper, real a1, real a2, real a3, real b1, real b2, real b3, real csu, real snu, real csv, real snv, real csq, real snq)¶
SLAGS2 computes 2-by-2 orthogonal matrices U, V, and Q, and applies them to matrices A and B such that the rows of the transformed A and B are parallel.
Purpose:
!> !> SLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such !> that if ( UPPER ) then !> !> U**T *A*Q = U**T *( A1 A2 )*Q = ( x 0 ) !> ( 0 A3 ) ( x x ) !> and !> V**T*B*Q = V**T *( B1 B2 )*Q = ( x 0 ) !> ( 0 B3 ) ( x x ) !> !> or if ( .NOT.UPPER ) then !> !> U**T *A*Q = U**T *( A1 0 )*Q = ( x x ) !> ( A2 A3 ) ( 0 x ) !> and !> V**T*B*Q = V**T*( B1 0 )*Q = ( x x ) !> ( B2 B3 ) ( 0 x ) !> !> The rows of the transformed A and B are parallel, where !> !> U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) !> ( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ ) !> !> Z**T denotes the transpose of Z. !> !>
Parameters
UPPER
!> UPPER is LOGICAL !> = .TRUE.: the input matrices A and B are upper triangular. !> = .FALSE.: the input matrices A and B are lower triangular. !>
A1
!> A1 is REAL !>
A2
!> A2 is REAL !>
A3
!> A3 is REAL !> On entry, A1, A2 and A3 are elements of the input 2-by-2 !> upper (lower) triangular matrix A. !>
B1
!> B1 is REAL !>
B2
!> B2 is REAL !>
B3
!> B3 is REAL !> On entry, B1, B2 and B3 are elements of the input 2-by-2 !> upper (lower) triangular matrix B. !>
CSU
!> CSU is REAL !>
SNU
!> SNU is REAL !> The desired orthogonal matrix U. !>
CSV
!> CSV is REAL !>
SNV
!> SNV is REAL !> The desired orthogonal matrix V. !>
CSQ
!> CSQ is REAL !>
SNQ
!> SNQ is REAL !> The desired orthogonal matrix Q. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 151 of file slags2.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
| Version 3.12.1 | LAPACK |