table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dpttrf.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dpttrf.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dpttrf.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine DPTTRF (n, d, e, info)
DPTTRF
Function/Subroutine Documentation¶
subroutine DPTTRF (integer n, double precision, dimension( * ) d, double precision, dimension( * ) e, integer info)¶
DPTTRF
Purpose:
!> !> DPTTRF computes the L*D*L**T factorization of a real symmetric !> positive definite tridiagonal matrix A. The factorization may also !> be regarded as having the form A = U**T*D*U. !>
Parameters
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
D
!> D is DOUBLE PRECISION array, dimension (N) !> On entry, the n diagonal elements of the tridiagonal matrix !> A. On exit, the n diagonal elements of the diagonal matrix !> D from the L*D*L**T factorization of A. !>
E
!> E is DOUBLE PRECISION array, dimension (N-1) !> On entry, the (n-1) subdiagonal elements of the tridiagonal !> matrix A. On exit, the (n-1) subdiagonal elements of the !> unit bidiagonal factor L from the L*D*L**T factorization of A. !> E can also be regarded as the superdiagonal of the unit !> bidiagonal factor U from the U**T*D*U factorization of A. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -k, the k-th argument had an illegal value !> > 0: if INFO = k, the leading principal minor of order k !> is not positive; if k < N, the factorization could not !> be completed, while if k = N, the factorization was !> completed, but D(N) <= 0. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 90 of file dpttrf.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |