table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dgelqt.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dgelqt.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dgelqt.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine DGELQT (m, n, mb, a, lda, t, ldt, work, info)
DGELQT
Function/Subroutine Documentation¶
subroutine DGELQT (integer m, integer n, integer mb, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldt, * ) t, integer ldt, double precision, dimension( * ) work, integer info)¶
DGELQT
Purpose:
!> !> DGELQT computes a blocked LQ factorization of a real M-by-N matrix A !> using the compact WY representation of Q. !>
Parameters
M
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
MB
!> MB is INTEGER !> The block size to be used in the blocked QR. MIN(M,N) >= MB >= 1. !>
A
!> A is DOUBLE PRECISION array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, the elements on and below the diagonal of the array !> contain the M-by-MIN(M,N) lower trapezoidal matrix L (L is !> lower triangular if M <= N); the elements above the diagonal !> are the rows of V. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
T
!> T is DOUBLE PRECISION array, dimension (LDT,MIN(M,N)) !> The upper triangular block reflectors stored in compact form !> as a sequence of upper triangular blocks. See below !> for further details. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= MB. !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (MB*N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix V stores the elementary reflectors H(i) in the i-th row !> above the diagonal. For example, if M=5 and N=3, the matrix V is !> !> V = ( 1 v1 v1 v1 v1 ) !> ( 1 v2 v2 v2 ) !> ( 1 v3 v3 ) !> !> !> where the vi's represent the vectors which define H(i), which are returned !> in the matrix A. The 1's along the diagonal of V are not stored in A. !> Let K=MIN(M,N). The number of blocks is B = ceiling(K/MB), where each !> block is of order MB except for the last block, which is of order !> IB = K - (B-1)*MB. For each of the B blocks, a upper triangular block !> reflector factor is computed: T1, T2, ..., TB. The MB-by-MB (and IB-by-IB !> for the last block) T's are stored in the MB-by-K matrix T as !> !> T = (T1 T2 ... TB). !>
Definition at line 138 of file dgelqt.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |