table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dgelq2.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dgelq2.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dgelq2.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine DGELQ2 (m, n, a, lda, tau, work, info)
DGELQ2 computes the LQ factorization of a general rectangular matrix
using an unblocked algorithm.
Function/Subroutine Documentation¶
subroutine DGELQ2 (integer m, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( * ) work, integer info)¶
DGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm.
Purpose:
!> !> DGELQ2 computes an LQ factorization of a real m-by-n matrix A: !> !> A = ( L 0 ) * Q !> !> where: !> !> Q is a n-by-n orthogonal matrix; !> L is a lower-triangular m-by-m matrix; !> 0 is a m-by-(n-m) zero matrix, if m < n. !> !>
Parameters
M
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is DOUBLE PRECISION array, dimension (LDA,N) !> On entry, the m by n matrix A. !> On exit, the elements on and below the diagonal of the array !> contain the m by min(m,n) lower trapezoidal matrix L (L is !> lower triangular if m <= n); the elements above the diagonal, !> with the array TAU, represent the orthogonal matrix Q as a !> product of elementary reflectors (see Further Details). !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
TAU
!> TAU is DOUBLE PRECISION array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors (see Further !> Details). !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (M) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(k) . . . H(2) H(1), where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**T !> !> where tau is a real scalar, and v is a real vector with !> v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n), !> and tau in TAU(i). !>
Definition at line 128 of file dgelq2.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |