table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/cgesvd.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/cgesvd.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/cgesvd.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine CGESVD (jobu, jobvt, m, n, a, lda, s, u, ldu,
vt, ldvt, work, lwork, rwork, info)
CGESVD computes the singular value decomposition (SVD) for GE matrices
Function/Subroutine Documentation¶
subroutine CGESVD (character jobu, character jobvt, integer m, integer n, complex, dimension( lda, * ) a, integer lda, real, dimension( * ) s, complex, dimension( ldu, * ) u, integer ldu, complex, dimension( ldvt, * ) vt, integer ldvt, complex, dimension( * ) work, integer lwork, real, dimension( * ) rwork, integer info)¶
CGESVD computes the singular value decomposition (SVD) for GE matrices
Purpose:
!> !> CGESVD computes the singular value decomposition (SVD) of a complex !> M-by-N matrix A, optionally computing the left and/or right singular !> vectors. The SVD is written !> !> A = U * SIGMA * conjugate-transpose(V) !> !> where SIGMA is an M-by-N matrix which is zero except for its !> min(m,n) diagonal elements, U is an M-by-M unitary matrix, and !> V is an N-by-N unitary matrix. The diagonal elements of SIGMA !> are the singular values of A; they are real and non-negative, and !> are returned in descending order. The first min(m,n) columns of !> U and V are the left and right singular vectors of A. !> !> Note that the routine returns V**H, not V. !>
Parameters
JOBU
!> JOBU is CHARACTER*1 !> Specifies options for computing all or part of the matrix U: !> = 'A': all M columns of U are returned in array U: !> = 'S': the first min(m,n) columns of U (the left singular !> vectors) are returned in the array U; !> = 'O': the first min(m,n) columns of U (the left singular !> vectors) are overwritten on the array A; !> = 'N': no columns of U (no left singular vectors) are !> computed. !>
JOBVT
!> JOBVT is CHARACTER*1 !> Specifies options for computing all or part of the matrix !> V**H: !> = 'A': all N rows of V**H are returned in the array VT; !> = 'S': the first min(m,n) rows of V**H (the right singular !> vectors) are returned in the array VT; !> = 'O': the first min(m,n) rows of V**H (the right singular !> vectors) are overwritten on the array A; !> = 'N': no rows of V**H (no right singular vectors) are !> computed. !> !> JOBVT and JOBU cannot both be 'O'. !>
M
!> M is INTEGER !> The number of rows of the input matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the input matrix A. N >= 0. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, !> if JOBU = 'O', A is overwritten with the first min(m,n) !> columns of U (the left singular vectors, !> stored columnwise); !> if JOBVT = 'O', A is overwritten with the first min(m,n) !> rows of V**H (the right singular vectors, !> stored rowwise); !> if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A !> are destroyed. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
S
!> S is REAL array, dimension (min(M,N)) !> The singular values of A, sorted so that S(i) >= S(i+1). !>
U
!> U is COMPLEX array, dimension (LDU,UCOL) !> (LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU = 'S'. !> If JOBU = 'A', U contains the M-by-M unitary matrix U; !> if JOBU = 'S', U contains the first min(m,n) columns of U !> (the left singular vectors, stored columnwise); !> if JOBU = 'N' or 'O', U is not referenced. !>
LDU
!> LDU is INTEGER !> The leading dimension of the array U. LDU >= 1; if !> JOBU = 'S' or 'A', LDU >= M. !>
VT
!> VT is COMPLEX array, dimension (LDVT,N) !> If JOBVT = 'A', VT contains the N-by-N unitary matrix !> V**H; !> if JOBVT = 'S', VT contains the first min(m,n) rows of !> V**H (the right singular vectors, stored rowwise); !> if JOBVT = 'N' or 'O', VT is not referenced. !>
LDVT
!> LDVT is INTEGER !> The leading dimension of the array VT. LDVT >= 1; if !> JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= min(M,N). !>
WORK
!> WORK is COMPLEX array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. !> LWORK >= MAX(1,2*MIN(M,N)+MAX(M,N)). !> For good performance, LWORK should generally be larger. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
RWORK
!> RWORK is REAL array, dimension (5*min(M,N)) !> On exit, if INFO > 0, RWORK(1:MIN(M,N)-1) contains the !> unconverged superdiagonal elements of an upper bidiagonal !> matrix B whose diagonal is in S (not necessarily sorted). !> B satisfies A = U * B * VT, so it has the same singular !> values as A, and singular vectors related by U and VT. !>
INFO
!> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: if CBDSQR did not converge, INFO specifies how many !> superdiagonals of an intermediate bidiagonal form B !> did not converge to zero. See the description of RWORK !> above for details. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 212 of file cgesvd.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |