Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/cgelq2.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/cgelq2.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/cgelq2.f

SYNOPSIS

Functions/Subroutines


subroutine CGELQ2 (m, n, a, lda, tau, work, info)
CGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm.

Function/Subroutine Documentation

subroutine CGELQ2 (integer m, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( * ) work, integer info)

CGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm.

Purpose:

!>
!> CGELQ2 computes an LQ factorization of a complex m-by-n matrix A:
!>
!>    A = ( L 0 ) *  Q
!>
!> where:
!>
!>    Q is a n-by-n orthogonal matrix;
!>    L is a lower-triangular m-by-m matrix;
!>    0 is a m-by-(n-m) zero matrix, if m < n.
!>
!> 

Parameters

M

!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 

A

!>          A is COMPLEX array, dimension (LDA,N)
!>          On entry, the m by n matrix A.
!>          On exit, the elements on and below the diagonal of the array
!>          contain the m by min(m,n) lower trapezoidal matrix L (L is
!>          lower triangular if m <= n); the elements above the diagonal,
!>          with the array TAU, represent the unitary matrix Q as a
!>          product of elementary reflectors (see Further Details).
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 

TAU

!>          TAU is COMPLEX array, dimension (min(M,N))
!>          The scalar factors of the elementary reflectors (see Further
!>          Details).
!> 

WORK

!>          WORK is COMPLEX array, dimension (M)
!> 

INFO

!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  The matrix Q is represented as a product of elementary reflectors
!>
!>     Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - tau * v * v**H
!>
!>  where tau is a complex scalar, and v is a complex vector with
!>  v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
!>  A(i,i+1:n), and tau in TAU(i).
!> 

Definition at line 128 of file cgelq2.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK