Scroll to navigation

GPG-AGENT(1) GNU Privacy Guard 2.6 GPG-AGENT(1)

NAME

gpg-agent - Secret key management for GnuPG

SYNOPSIS

gpg-agent [--homedir dir] [--options file] [options]
gpg-agent [--homedir dir] [--options file] [options] --server
gpg-agent [--homedir dir] [--options file] [options] --daemon [command_line]

DESCRIPTION

gpg-agent is a daemon to manage secret (private) keys independently from any protocol. It is used as a backend for gpg and gpgsm as well as for a couple of other utilities.

The agent is automatically started on demand by gpg, gpgsm, gpgconf, or gpg-connect-agent. Thus there is no reason to start it manually. In case you want to use the included Secure Shell Agent you may start the agent using:

gpg-connect-agent /bye

If you want to manually terminate the currently-running agent, you can safely do so with:

gpgconf --kill gpg-agent

You should always add the following lines to your .bashrc or whatever initialization file is used for all shell invocations:

GPG_TTY=$(tty)
export GPG_TTY

It is important that this environment variable always reflects the output of the tty command. For W32 systems this option is not required.

Please make sure that a proper pinentry program has been installed under the default filename (which is system dependent) or use the option pinentry-program to specify the full name of that program. It is often useful to install a symbolic link from the actual used pinentry (e.g., ‘/usr/bin/pinentry-gtk’) to the expected one (e.g., ‘/usr/bin/pinentry’).

COMMANDS

Commands are not distinguished from options except for the fact that only one command is allowed.

Print the program version and licensing information. Note that you cannot abbreviate this command.

Print a usage message summarizing the most useful command-line options. Note that you cannot abbreviate this command.

Print a list of all available options and commands. Note that you cannot abbreviate this command.

Run in server mode and wait for commands on the stdin. The default mode is to create a socket and listen for commands there.

Start the gpg-agent as a daemon; that is, detach it from the console and run it in the background.

As an alternative you may create a new process as a child of gpg-agent: gpg-agent --daemon /bin/sh. This way you get a new shell with the environment setup properly; after you exit from this shell, gpg-agent terminates within a few seconds.

Run in the foreground, sending logs by default to stderr, and listening on provided file descriptors, which must already be bound to listening sockets. This option is deprecated and not supported on Windows.

If in ‘common.conf’ the option no-autostart is set, any start attempts will be ignored.

In --supervised mode, different file descriptors can be provided for use as different socket types (e.g., ssh, extra) as long as they are identified in the environment variable LISTEN_FDNAMES (see sd_listen_fds(3) on some Linux distributions for more information on this convention).

OPTIONS

Options may either be used on the command line or, after stripping off the two leading dashes, in the configuration file.

Reads configuration from file instead of from the default per-user configuration file. The default configuration file is named ‘gpg-agent.conf’ and expected in the ‘.gnupg’ directory directly below the home directory of the user. This option is ignored if used in an options file.

Set the name of the home directory to dir. If this option is not used, the home directory defaults to ‘~/.gnupg’. It is only recognized when given on the command line. It also overrides any home directory stated through the environment variable ‘GNUPGHOME’ or (on Windows systems) by means of the Registry entry HKCU\Software\GNU\GnuPG:HomeDir.

On Windows systems it is possible to install GnuPG as a portable application. In this case only this command line option is considered, all other ways to set a home directory are ignored.

Outputs additional information while running. You can increase the verbosity by giving several verbose commands to gpg-agent, such as ‘-vv’.

Try to be as quiet as possible.

Don't invoke a pinentry or do any other thing requiring human interaction.

This option is only useful for testing; it sets the system time back or forth to epoch which is the number of seconds elapsed since the year 1970.

Select the debug level for investigating problems. level may be a numeric value or a keyword:

No debugging at all. A value of less than 1 may be used instead of the keyword.
Some basic debug messages. A value between 1 and 2 may be used instead of the keyword.
More verbose debug messages. A value between 3 and 5 may be used instead of the keyword.
Even more detailed messages. A value between 6 and 8 may be used instead of the keyword.
All of the debug messages you can get. A value greater than 8 may be used instead of the keyword. The creation of hash tracing files is only enabled if the keyword is used.

How these messages are mapped to the actual debugging flags is not specified and may change with newer releases of this program. They are however carefully selected to best aid in debugging.

Set debug flags. All flags are or-ed and flags may be given in C syntax (e.g., 0x0042) or as a comma separated list of flag names. To get a list of all supported flags the single word "help" can be used. This option is only useful for debugging and the behavior may change at any time without notice.

Same as --debug=0xffffffff

When running in server mode, wait n seconds before entering the actual processing loop and print the pid. This gives time to attach a debugger.

This option inhibits the use of the very secure random quality level (Libgcrypt’s GCRY_VERY_STRONG_RANDOM) and degrades all request down to standard random quality. It is only used for testing and should not be used for any production quality keys. This option is only effective when given on the command line.

On GNU/Linux, another way to quickly generate insecure keys is to use rngd to fill the kernel's entropy pool with lower quality random data. rngd is typically provided by the rng-tools package. It can be run as follows: ‘sudo rngd -f -r /dev/urandom’.

This option enables extra debug information pertaining to the Pinentry. As of now it is only useful when used along with --debug 1024.

Don't detach the process from the console. This is mainly useful for debugging.

In --daemon mode, gpg-agent detects an already running gpg-agent and does not allow one to start a new instance. This option can be used to override this check: the new gpg-agent process will try to take over the communication sockets from the already running process and start anyway. This option should in general not be used.

Format the info output in daemon mode for use with the standard Bourne shell or the C-shell respectively. The default is to guess it based on the environment variable SHELL which is correct in almost all cases.

Tell the pinentry to grab the keyboard and mouse. This option should be used on X-Servers to avoid X-sniffing attacks. Any use of the option --grab overrides an used option --no-grab. The default is --no-grab.

Append all logging output to file. This is very helpful in seeing what the agent actually does. Use ‘socket://’ to log to socket. If neither a log file nor a log file descriptor has been set on a Windows platform, the Registry entry HKCU\Software\GNU\GnuPG:DefaultLogFile, if set, is used to specify the logging output.

Do not allow clients to mark keys as trusted, i.e., put them into the ‘trustlist.txt’ file. This makes it harder for users to inadvertently accept Root-CA keys.

Entirely ignore the user trust list and consider only the global trustlist (‘/etc/gnupg/trustlist.txt’). This implies the [option --no-allow-mark-trusted].

Changes the default name for the global trustlist from "trustlist.txt" to file. If file does not contain any slashes and does not start with "~/" it is searched in the system configuration directory (‘/etc/gnupg’).

This option allows the use of gpg-preset-passphrase to seed the internal cache of gpg-agent with passphrases.

Disallow or allow clients to use the loopback pinentry features; see the option pinentry-mode for details. Allow is the default.

The --force option of the Assuan command DELETE_KEY is also controlled by this option: The option is ignored if a loopback pinentry is disallowed.

Tell Pinentry not to enable features which use an external cache for passphrases.

Some desktop environments prefer to unlock all credentials with one master password and may have installed a Pinentry which employs an additional external cache to implement such a policy. By using this option the Pinentry is advised not to make use of such a cache and instead always ask the user for the requested passphrase.

Tell Pinentry to allow features to divert the passphrase entry to a running Emacs instance. How this is exactly handled depends on the version of the used Pinentry.

This option will let gpg-agent bypass the passphrase cache for all signing operation. Note that there is also a per-session option to control this behavior but this command line option takes precedence.

Set the time a cache entry is valid to n seconds. The default is 600 seconds. Each time a cache entry is accessed, the entry's timer is reset. To set an entry's maximum lifetime, use max-cache-ttl. Note that a cached passphrase may not be evicted immediately from memory if no client requests a cache operation. This is due to an internal housekeeping function which is only run every few seconds.

Set the time a cache entry used for SSH keys is valid to n seconds. The default is 1800 seconds. Each time a cache entry is accessed, the entry's timer is reset. To set an entry's maximum lifetime, use max-cache-ttl-ssh.

Set the maximum time a cache entry is valid to n seconds. After this time a cache entry will be expired even if it has been accessed recently or has been set using gpg-preset-passphrase. The default is 2 hours (7200 seconds).

Set the maximum time a cache entry used for SSH keys is valid to n seconds. After this time a cache entry will be expired even if it has been accessed recently or has been set using gpg-preset-passphrase. The default is 2 hours (7200 seconds).

Enforce the passphrase constraints by not allowing the user to bypass them using the ``Take it anyway'' button.

Set the minimal length of a passphrase. When entering a new passphrase shorter than this value a warning will be displayed. Defaults to 8.

Set the minimal number of digits or special characters required in a passphrase. When entering a new passphrase with less than this number of digits or special characters a warning will be displayed. Defaults to 1.

Check the passphrase against the pattern given in file. When entering a new passphrase matching one of these pattern a warning will be displayed. If file does not contain any slashes and does not start with "~/" it is searched in the system configuration directory (‘/etc/gnupg’). The default is not to use any pattern file. The second version of this option is only used when creating a new symmetric key to allow the use of different patterns for such passphrases.

Security note: It is known that checking a passphrase against a list of pattern or even against a complete dictionary is not very effective to enforce good passphrases. Users will soon figure up ways to bypass such a policy. A better policy is to educate users on good security behavior and optionally to run a passphrase cracker regularly on all users passphrases to catch the very simple ones.

Ask the user to change the passphrase if n days have passed since the last change. With --enforce-passphrase-constraints set the user may not bypass this check.

This option does nothing yet.

This option asks the Pinentry to use char for displaying hidden characters. char must be one character UTF-8 string. A Pinentry may or may not honor this request.

This option asks the Pinentry to timeout after n seconds with no user input. The default value of 0 does not ask the pinentry to timeout, however a Pinentry may use its own default timeout value in this case. A Pinentry may or may not honor this request.

This option asks the Pinentry to enable passphrase formatting when asking the user for a new passphrase and masking of the passphrase is turned off.

If passphrase formatting is enabled, then all non-breaking space characters are stripped from the entered passphrase. Passphrase formatting is mostly useful in combination with passphrases generated with the GENPIN feature of some Pinentries. Note that such a generated passphrase, if not modified by the user, skips all passphrase constraints checking because such constraints would actually weaken the generated passphrase.

Use program filename as the PIN entry. The default is installation dependent. With the default configuration the name of the default pinentry is ‘pinentry’; if that file does not exist but a ‘pinentry-basic’ exist the latter is used.

On a Windows platform the default is to use the first existing program from this list: ‘bin\pinentry.exe’, ‘..\Gpg4win\bin\pinentry.exe’, ‘..\Gpg4win\pinentry.exe’, ‘..\GNU\GnuPG\pinentry.exe’, ‘..\GNU\bin\pinentry.exe’, ‘bin\pinentry-basic.exe’ where the file names are relative to the GnuPG installation directory.

By default the filename of the socket gpg-agent is listening for requests is passed to Pinentry, so that it can touch that file before exiting (it does this only in curses mode). This option changes the file passed to Pinentry to filename. The special name /dev/null may be used to completely disable this feature. Note that Pinentry will not create that file, it will only change the modification and access time.

Use program filename as the Smartcard daemon. The default is installation dependent and can be shown with the gpgconf command.

Do not make use of the scdaemon tool. This option has the effect of disabling the ability to do smartcard operations. Note, that enabling this option at runtime does not kill an already forked scdaemon.

gpg-agent employs a periodic self-test to detect a stolen socket. This usually means a second instance of gpg-agent has taken over the socket and gpg-agent will then terminate itself. This option may be used to disable this self-test for debugging purposes.

Since GnuPG 2.1 the standard socket is always used. These options have no more effect. The command gpg-agent --use-standard-socket-p will thus always return success.

These options are used with the server mode to pass localization information.

Ignore requests to change the current tty or X window system's DISPLAY variable respectively. This is useful to lock the pinentry to pop up at the tty or display you started the agent.

Set the size of the queue for pending connections. The default is 64.

The extra socket is created by default, you may use this option to change the name of the socket. To disable the creation of the socket use ``none'' or ``/dev/null'' for name.

Also listen on native gpg-agent connections on the given socket. The intended use for this extra socket is to setup a Unix domain socket forwarding from a remote machine to this socket on the local machine. A gpg running on the remote machine may then connect to the local gpg-agent and use its private keys. This enables decrypting or signing data on a remote machine without exposing the private keys to the remote machine.

These options are obsolete and have no effect. The extended key format is used for years now and has been supported since 2.1.12. Existing keys in the old format are migrated to the new format as soon as they are touched.

On Unix platforms the OpenSSH Agent protocol is always enabled, but gpg-agent will only set the SSH_AUTH_SOCK variable if the option enable-ssh-support is given. Some Linux distributions use the presence of this option to decide whether the old ssh-agent shall be started.

On Windows support for the native ssh implementation must be enabled using the the option enable-win32-openssh-support. For using gpg-agent as a replacement for PuTTY's Pageant, the option enable-putty-support must be enabled.

In this mode of operation, the agent does not only implement the gpg-agent protocol, but also the agent protocol used by OpenSSH (through a separate socket or via Named Pipes) or the protocol used by PuTTY. Consequently, this allows one to use the gpg-agent as a drop-in replacement for the ssh-agent.

SSH keys, which are to be used through the agent, need to be added to the gpg-agent initially through the ssh-add utility. When a key is added, ssh-add will ask for the password of the provided key file and send the unprotected key material to the agent; this causes the gpg-agent to ask for a passphrase, which is to be used for encrypting the newly received key and storing it in a gpg-agent specific directory.

Once a key has been added to the gpg-agent this way, the gpg-agent will be ready to use the key.

Note: in case the gpg-agent receives a signature request, the user might need to be prompted for a passphrase, which is necessary for decrypting the stored key. Since the ssh-agent protocol does not contain a mechanism for telling the agent on which display/terminal it is running, gpg-agent's ssh-support will use the TTY or X display where gpg-agent has been started. To switch this display to the current one, the following command may be used:

gpg-connect-agent updatestartuptty /bye

Although all GnuPG components try to start the gpg-agent as needed, this is not possible for the ssh support because ssh does not know about it. Thus if no GnuPG tool which accesses the agent has been run, there is no guarantee that ssh is able to use gpg-agent for authentication. To fix this you may start gpg-agent if needed using this simple command:

gpg-connect-agent /bye

Adding the --verbose shows the progress of starting the agent.

The --enable-putty-support is only available under Windows and allows the use of gpg-agent with the ssh implementation putty. This is similar to the regular ssh-agent support but makes use of Windows message queue as required by putty.

The order in which keys are presented to ssh are:


If a key file has the attribute "Use-for-ssh" and its value is
negative, these keys are presented first to ssh. The negative
values are capped at -999 with -999 being lower ranked than -1.
These values can be used to prefer on-disk keys over keys taken
from active cards.


Active cards (inserted into a card reader or plugged in tokens)
are always tried; they are ordered by their serial numbers.


Non-disabled keys from the sshcontrol file are presented in the
order they appear in this file. Note that the sshcontrol file
is deprecated.


If a key file has the attribute "Use-for-ssh" and its value is
"yes", "true", or any positive number the key is presented in
the order of their values. "yes" and "true" have a value of 1;
other values are capped at 99999.

Editing the "Use-for-ssh" values can be done with an editor or using gpg-connect-agent and "KEYATTR" (Remember to append a colon to the key; i.e., use "Use-for-ssh:").

Select the digest algorithm used to compute ssh fingerprints that are communicated to the user, e.g., in pinentry dialogs. OpenSSH has transitioned from using MD5 to the more secure SHA256.

Allow Libgcrypt to expand its secure memory area as required. The optional value n is a non-negative integer with a suggested size in bytes of each additionally allocated secure memory area. The value is rounded up to the next 32 KiB; usual C style prefixes are allowed. For an heavy loaded gpg-agent with many concurrent connection this option avoids sign or decrypt errors due to out of secure memory error returns.

Change the default calibration time to milliseconds. The given value is capped at 60 seconds; a value of 0 resets to the compiled-in default. This option is re-read on a SIGHUP (or gpgconf --reload gpg-agent) and the S2K count is then re-calibrated.

Specify the iteration count used to protect the passphrase. This option can be used to override the auto-calibration done by default. The auto-calibration computes a count which requires by default 100ms to mangle a given passphrase. See also --s2k-calibration.

To view the actually used iteration count and the milliseconds required for an S2K operation use:

gpg-connect-agent 'GETINFO s2k_count' /bye
gpg-connect-agent 'GETINFO s2k_time' /bye

To view the auto-calibrated count use:

gpg-connect-agent 'GETINFO s2k_count_cal' /bye

EXAMPLES

It is important to set the environment variable GPG_TTY in your login shell, for example in the ‘~/.bashrc’ init script:


export GPG_TTY=$(tty)

If you enabled the Ssh Agent Support, you also need to tell ssh about it by adding this to your init script:

unset SSH_AGENT_PID
if [ "${gnupg_SSH_AUTH_SOCK_by:-0}" -ne $$ ]; then

export SSH_AUTH_SOCK="$(gpgconf --list-dirs agent-ssh-socket)" fi

FILES

There are a few configuration files needed for the operation of the agent. By default they may all be found in the current home directory (see: [option --homedir]).


This is the standard configuration file read by gpg-agent on
startup. It may contain any valid long option; the leading
two dashes may not be entered and the option may not be abbreviated.
This file is also read after a SIGHUP however only a few
options will actually have an effect. This default name may be
changed on the command line (see: [option --options]).
You should backup this file.


This is the list of trusted keys. You should backup this file.


Comment lines, indicated by a leading hash mark, as well as empty
lines are ignored. To mark a key as trusted you need to enter its
fingerprint followed by a space and a capital letter S. Colons
may optionally be used to separate the bytes of a fingerprint; this
enables cutting and pasting the fingerprint from a key listing output. If
the line is prefixed with a ! the key is explicitly marked as
not trusted.


Here is an example where two keys are marked as ultimately trusted
and one as not trusted:


.RS 2


# CN=Wurzel ZS 3,O=Intevation GmbH,C=DE
A6935DD34EF3087973C706FC311AA2CCF733765B S
# CN=PCA-1-Verwaltung-02/O=PKI-1-Verwaltung/C=DE
DC:BD:69:25:48:BD:BB:7E:31:6E:BB:80:D3:00:80:35:D4:F8:A6:CD S
# CN=Root-CA/O=Schlapphuete/L=Pullach/C=DE
!14:56:98:D3:FE:9C:CA:5A:31:6E:BC:81:D3:11:4E:00:90:A3:44:C2 S
.fi

Before entering a key into this file, you need to ensure its authenticity. How to do this depends on your organisation; your administrator might have already entered those keys which are deemed trustworthy enough into this file. Places where to look for the fingerprint of a root certificate are letters received from the CA or the website of the CA (after making 100% sure that this is indeed the website of that CA). You may want to consider disallowing interactive updates of this file by using the [option --no-allow-mark-trusted]. It might even be advisable to change the permissions to read-only so that this file can't be changed inadvertently. As a special feature a line include-default will include a global list of trusted certificates (e.g., ‘/etc/gnupg/trustlist.txt’). This global list is also used if the local list is not available; the [option --no-user-trustlist] enforces the use of only this global list. It is possible to add further flags after the S for use by the caller:

Relax checking of some root certificate requirements.  As of now this
flag allows the use of root certificates with a missing basicConstraints
attribute (despite that it is a MUST for CA certificates) and disables
CRL checking for the root certificate.
    
If validation of a certificate finally issued by a CA with this flag set
fails, try again using the chain validation model.
    
The CA is allowed to issue certificates for qualified signatures.
This flag has an effect only if used in the global list.  This is now
the preferred way to mark such CA; the old way of having a separate
file ‘qualified.txt’ is still supported.
    
The CA is part of an approved PKI for the German classification level
VS-NfD.  It is only valid in the global trustlist.  As of now this is
used only for documentation purpose.
    

This file is used when support for the secure shell agent protocol has
been enabled (see: [option --enable-ssh-support]). Only keys present in
this file are used in the SSH protocol.  You should backup this file.
This file is deprecated in favor of the "Use-for-ssh" attribute in the
key files.
The ssh-add tool may be used to add new entries to this file;
you may also add them manually.  Comment lines, indicated by a leading
hash mark, as well as empty lines are ignored.  An entry starts with
optional whitespace, followed by the keygrip of the key given as 40 hex
digits, optionally followed by the caching TTL in seconds and another
optional field for arbitrary flags.  A non-zero TTL overrides the global
default as set by --default-cache-ttl-ssh.
The only flag support is confirm.  If this flag is found for a
key, each use of the key will pop up a pinentry to confirm the use of
that key.  The flag is automatically set if a new key was loaded into
gpg-agent using the option -c of the ssh-add
command.
The keygrip may be prefixed with a ! to disable an entry.
The following example lists exactly one key.  Note that keys available
through a OpenPGP smartcard in the active smartcard reader are
implicitly added to this list; i.e., there is no need to list them.
    


# Key added on: 2011-07-20 20:38:46
# Fingerprint: 5e:8d:c4:ad:e7:af:6e:27:8a:d6:13:e4:79:ad:0b:81
34B62F25E277CF13D3C6BCEBFD3F85D08F0A864B 0 confirm


This is the directory where gpg-agent stores the private keys. Each
key is stored in a file with the name made up of the keygrip and the
suffix ‘key’. You should backup all files in this directory
and take great care to keep this backup closed away.

Note that on larger installations, it is useful to put predefined files into the directory ‘/etc/skel/.gnupg’ so that newly created users start up with a working configuration. For existing users the a small helper script is provided to create these files (see: [addgnupghome]).

SIGNALS

A running gpg-agent may be controlled by signals, i.e., using the kill command to send a signal to the process.

Here is a list of supported signals:

This signal flushes all cached passphrases and if the program has been started with a configuration file, the configuration file is read again. Only certain options are honored: quiet, verbose, debug, debug-all, debug-level, debug-pinentry, no-grab, pinentry-program, pinentry-invisible-char, default-cache-ttl, max-cache-ttl, ignore-cache-for-signing, s2k-count, no-allow-external-cache, allow-emacs-pinentry, no-allow-mark-trusted, disable-scdaemon, and disable-check-own-socket. scdaemon-program is also supported but due to the current implementation, which calls the scdaemon only once, it is not of much use unless you manually kill the scdaemon.

Shuts down the process but waits until all current requests are fulfilled. If the process has received 3 of these signals and requests are still pending, a shutdown is forced.

Shuts down the process immediately.

Dump internal information to the log file.

This signal is used for internal purposes.

SEE ALSO

gpg(1), gpgsm(1), gpgconf(1), gpg-connect-agent(1), scdaemon(1)

The full documentation for this tool is maintained as a Texinfo manual. If GnuPG and the info program are properly installed at your site, the command

info gnupg

should give you access to the complete manual including a menu structure and an index.

2024-09-11 GnuPG 2.5.1