table of contents
        
      
      
    | std::exp2,std::exp2f,std::exp2l(3) | C++ Standard Libary | std::exp2,std::exp2f,std::exp2l(3) | 
NAME¶
std::exp2,std::exp2f,std::exp2l - std::exp2,std::exp2f,std::exp2l
Synopsis¶
 Defined in header <cmath>
  
   float exp2 ( float num );
  
   double exp2 ( double num ); (until C++23)
  
   long double exp2 ( long double num );
  
   /* floating-point-type */ (since C++23)
  
   exp2 ( /* floating-point-type */ num ); (constexpr since C++26)
  
   float exp2f( float num ); (1) (2) (since C++11)
  
   (constexpr since C++26)
  
   long double exp2l( long double num ); (3) (since C++11)
  
   (constexpr since C++26)
  
   Additional overloads (since C++11)
  
   Defined in header <cmath>
  
   template< class Integer > (A) (constexpr since C++26)
  
   double exp2 ( Integer num );
  
   1-3) Computes 2 raised to the given power num.
  
   The library provides overloads of std::exp2 for all cv-unqualified
    floating-point
  
   types as the type of the parameter.
  
   (since C++23)
  
   A) Additional overloads are provided for all integer types, which are
    (since C++11)
  
   treated as double.
Parameters¶
num - floating-point or integer value
Return value¶
 If no errors occur, the base-2 exponential of num (2num
  
   ) is returned.
  
   If a range error due to overflow occurs, +HUGE_VAL, +HUGE_VALF, or +HUGE_VALL
    is
  
   returned.
  
   If a range error occurs due to underflow, the correct result (after rounding)
    is
  
   returned.
Error handling¶
Errors are reported as specified in math_errhandling.
  
   If the implementation supports IEEE floating-point arithmetic (IEC
  60559),
  
   * If the argument is ±0, 1 is returned.
  
   * If the argument is -∞, +0 is returned.
  
   * If the argument is +∞, +∞ is returned.
  
   * If the argument is NaN, NaN is returned.
Notes¶
 The additional overloads are not required to be provided exactly
    as (A). They only
  
   need to be sufficient to ensure that for their argument num of integer type,
  
   std::exp2(num) has the same effect as
    std::exp2(static_cast<double>(num)).
  
   For integral exponents, it may be preferable to use std::ldexp.
Example¶
// Run this code
  
   #include <cerrno>
  
   #include <cfenv>
  
   #include <cmath>
  
   #include <cstring>
  
   #include <iostream>
  
   // #pragma STDC FENV_ACCESS ON
  
   int main()
  
   {
  
   std::cout << "exp2(4) = " << std::exp2(4) << '\n'
  
   << "exp2(0.5) = " << std::exp2(0.5) << '\n'
  
   << "exp2(-4) = " << std::exp2(-4) << '\n';
  
   // special values
  
   std::cout << "exp2(-0) = " << std::exp2(-0.0) <<
    '\n'
  
   << "exp2(-Inf) = " << std::exp2(-INFINITY) <<
    '\n';
  
   // error handling
  
   errno = 0;
  
   std::feclearexcept(FE_ALL_EXCEPT);
  
   const double inf = std::exp2(1024);
  
   const bool is_range_error = errno == ERANGE;
  
   std::cout << "exp2(1024) = " << inf << '\n';
  
   if (is_range_error)
  
   std::cout << " errno == ERANGE: " <<
    std::strerror(ERANGE) << '\n';
  
   if (std::fetestexcept(FE_OVERFLOW))
  
   std::cout << " FE_OVERFLOW raised\n";
  
   }
Possible output:¶
 exp2(4) = 16
  
   exp2(0.5) = 1.41421
  
   exp2(-4) = 0.0625
  
   exp2(-0) = 1
  
   exp2(-Inf) = 0
  
   exp2(1024) = inf
  
   errno == ERANGE: Numerical result out of range
  
   FE_OVERFLOW raised
See also¶
 exp
  
   expf returns e raised to the given power (\({\small e^x}\)e^x)
  
   expl (function)
  
   (C++11)
  
   (C++11)
  
   expm1
  
   expm1f
  
   expm1l returns e raised to the given power, minus one (\({\small
    e^x-1}\)e^x-1)
  
   (C++11) (function)
  
   (C++11)
  
   (C++11)
  
   ldexp
  
   ldexpf multiplies a number by 2 raised to an integral power
  
   ldexpl (function)
  
   (C++11)
  
   (C++11)
  
   log2
  
   log2f
  
   log2l base 2 logarithm of the given number (\({\small\log_{2}{x}}\)log[2](x))
  
   (C++11) (function)
  
   (C++11)
  
   (C++11)
  
   C documentation for
  
   exp2
| 2024.06.10 | http://cppreference.com |