table of contents
        
      
      
    | std::cosh(std::complex)(3) | C++ Standard Libary | std::cosh(std::complex)(3) | 
NAME¶
std::cosh(std::complex) - std::cosh(std::complex)
Synopsis¶
 Defined in header <complex>
  
   template< class T > (since C++11)
  
   complex<T> cosh( const complex<T>& z );
  
   Computes complex hyperbolic cosine of a complex value z.
Parameters¶
z - complex value
Return value¶
If no errors occur, complex hyperbolic cosine of z is returned.
  
   Error handling and special values
  
   Errors are reported consistent with math_errhandling.
  
   If the implementation supports IEEE floating-point arithmetic,
  
   * std::cosh(std::conj(z)) == std::conj(std::cosh(z))
  
   * std::cosh(z) == std::cosh(-z)
  
   * If z is (+0,+0), the result is (1,+0)
  
   * If z is (+0,+∞), the result is (NaN,±0) (the sign of the
    imaginary part is
  
   unspecified) and FE_INVALID is raised
  
   * If z is (+0,NaN), the result is (NaN,±0) (the sign of the imaginary
    part is
  
   unspecified)
  
   * If z is (x,+∞) (for any finite non-zero x), the result is (NaN,NaN)
    and
  
   FE_INVALID is raised
  
   * If z is (x,NaN) (for any finite non-zero x), the result is (NaN,NaN) and
  
   FE_INVALID may be raised
  
   * If z is (+∞,+0), the result is (+∞,+0)
  
   * If z is (+∞,y) (for any finite non-zero y), the result is
    +∞cis(y)
  
   * If z is (+∞,+∞), the result is (±∞,NaN) (the
    sign of the real part is
  
   unspecified) and FE_INVALID is raised
  
   * If z is (+∞,NaN), the result is (+∞,NaN)
  
   * If z is (NaN,+0), the result is (NaN,±0) (the sign of the imaginary
    part is
  
   unspecified)
  
   * If z is (NaN,+y) (for any finite non-zero y), the result is (NaN,NaN) and
  
   FE_INVALID may be raised
  
   * If z is (NaN,NaN), the result is (NaN,NaN)
  
   where cis(y) is cos(y) + i sin(y).
Notes¶
Mathematical definition of hyperbolic cosine is cosh z =
  
   ez
  
   +e-z
  
   2
  
   .
  
   Hyperbolic cosine is an entire function in the complex plane and has no
    branch cuts.
  
   It is periodic with respect to the imaginary component, with period
    2πi.
Examples¶
// Run this code
  
   #include <cmath>
  
   #include <complex>
  
   #include <iostream>
  
   int main()
  
   {
  
   std::cout << std::fixed;
  
   std::complex<double> z(1.0, 0.0); // behaves like real cosh along the
    real line
  
   std::cout << "cosh" << z << " = "
    << std::cosh(z)
  
   << " (cosh(1) = " << std::cosh(1) <<
    ")\n";
  
   std::complex<double> z2(0.0, 1.0); // behaves like real cosine along
    the imaginary line
  
   std::cout << "cosh" << z2 << " = "
    << std::cosh(z2)
  
   << " ( cos(1) = " << std::cos(1) <<
    ")\n";
  
   }
Output:¶
 cosh(1.000000,0.000000) = (1.543081,0.000000) (cosh(1) =
    1.543081)
  
   cosh(0.000000,1.000000) = (0.540302,0.000000) ( cos(1) = 0.540302)
See also¶
 computes hyperbolic sine of a complex number
  
   sinh(std::complex) (\({\small\sinh{z}}\)sinh(z))
  
   (function template)
  
   computes hyperbolic tangent of a complex number
  
   tanh(std::complex) (\({\small\tanh{z}}\)tanh(z))
  
   (function template)
  
   acosh(std::complex) computes area hyperbolic cosine of a complex number
  
   (C++11) (\({\small\operatorname{arcosh}{z}}\)arcosh(z))
  
   (function template)
  
   cosh
  
   coshf computes hyperbolic cosine (\({\small\cosh{x}}\)cosh(x))
  
   coshl (function)
  
   (C++11)
  
   (C++11)
  
   cosh(std::valarray) applies the function std::cosh to each element of
    valarray
  
   (function template)
  
   C documentation for
  
   ccosh
| 2024.06.10 | http://cppreference.com |