table of contents
std::beta,std::betaf,std::betal(3) | C++ Standard Libary | std::beta,std::betaf,std::betal(3) |
NAME¶
std::beta,std::betaf,std::betal - std::beta,std::betaf,std::betal
Synopsis¶
double beta( double x, double y );
float betaf( float x, float y ); (1)
long double betal( long double x, long double y );
Promoted beta( Arithmetic x, Arithmetic y ); (2)
1) Computes the beta function of x and y.
2) A set of overloads or a function template for all combinations of
arguments of
arithmetic type not covered by (1). If any argument has integral type,
it is cast to
double. If any argument is long double, then the return type Promoted is also
long
double, otherwise the return type is always double.
As all special functions, beta is only guaranteed to be available in
<cmath> if
__STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at
least
201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before
including any
standard library headers.
Parameters¶
x, y - values of a floating-point or integral type
Return value¶
If no errors occur, value of the beta function of x and y, that
is ∫1
0tx-1
(1 - t)(y-1)
dt, or, equivalently,
Γ(x)Γ(y)
Γ(x + y)
is returned.
Error handling¶
Errors may be reported as specified in math_errhandling.
* If any argument is NaN, NaN is returned and domain error is not reported.
* The function is only required to be defined where both x and y are greater
than
zero, and is allowed to report a domain error otherwise.
Notes¶
Implementations that do not support TR 29124 but support TR
19768, provide this
function in the header tr1/cmath and namespace std::tr1.
An implementation of this function is also available in boost.math.
beta(x, y) equals beta(y, x).
When x and y are positive integers, beta(x, y) equals \(\frac{(x - 1)!(y -
1)!}{(x +
y - 1)!}\)
(x - 1)!(y - 1)!
(x + y - 1)!
. Binomial coefficients can be expressed in terms of the beta function:
\(\binom{n}{k} = \frac{1}{(n + 1)B(n - k + 1, k + 1)}\)⎛
⎜
⎝n
k⎞
⎟
⎠=
1
(n + 1)Β(n - k + 1, k + 1)
.
Example¶
(works as shown with gcc 6.0)
// Run this code
#define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1
#include <cmath>
#include <iomanip>
#include <iostream>
#include <string>
double binom(int n, int k)
{
return 1 / ((n + 1) * std::beta(n - k + 1, k + 1));
}
int main()
{
std::cout << "Pascal's triangle:\n";
for (int n = 1; n < 10; ++n)
{
std::cout << std::string(20 - n * 2, ' ');
for (int k = 1; k < n; ++k)
std::cout << std::setw(3) << binom(n, k) << ' ';
std::cout << '\n';
}
}
Output:¶
Pascal's triangle:
2
3 3
4 6 4
5 10 10 5
6 15 20 15 6
7 21 35 35 21 7
8 28 56 70 56 28 8
9 36 84 126 126 84 36 9
See also¶
tgamma
tgammaf
tgammal gamma function
(C++11) (function)
(C++11)
(C++11)
External links¶
Weisstein, Eric W. "Beta Function." From MathWorld--A Wolfram Web Resource.
2024.06.10 | http://cppreference.com |