table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/zstt21.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/zstt21.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/zstt21.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine ZSTT21 (n, kband, ad, ae, sd, se, u, ldu, work,
rwork, result)
ZSTT21
Function/Subroutine Documentation¶
subroutine ZSTT21 (integer n, integer kband, double precision, dimension( * ) ad, double precision, dimension( * ) ae, double precision, dimension( * ) sd, double precision, dimension( * ) se, complex*16, dimension( ldu, * ) u, integer ldu, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, double precision, dimension( 2 ) result)¶
ZSTT21
Purpose:
!> !> ZSTT21 checks a decomposition of the form !> !> A = U S U**H !> !> where **H means conjugate transpose, A is real symmetric tridiagonal, !> U is unitary, and S is real and diagonal (if KBAND=0) or symmetric !> tridiagonal (if KBAND=1). Two tests are performed: !> !> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) !> !> RESULT(2) = | I - U U**H | / ( n ulp ) !>
Parameters
N
!> N is INTEGER !> The size of the matrix. If it is zero, ZSTT21 does nothing. !> It must be at least zero. !>
KBAND
!> KBAND is INTEGER !> The bandwidth of the matrix S. It may only be zero or one. !> If zero, then S is diagonal, and SE is not referenced. If !> one, then S is symmetric tri-diagonal. !>
AD
!> AD is DOUBLE PRECISION array, dimension (N) !> The diagonal of the original (unfactored) matrix A. A is !> assumed to be real symmetric tridiagonal. !>
AE
!> AE is DOUBLE PRECISION array, dimension (N-1) !> The off-diagonal of the original (unfactored) matrix A. A !> is assumed to be symmetric tridiagonal. AE(1) is the (1,2) !> and (2,1) element, AE(2) is the (2,3) and (3,2) element, etc. !>
SD
!> SD is DOUBLE PRECISION array, dimension (N) !> The diagonal of the real (symmetric tri-) diagonal matrix S. !>
SE
!> SE is DOUBLE PRECISION array, dimension (N-1) !> The off-diagonal of the (symmetric tri-) diagonal matrix S. !> Not referenced if KBSND=0. If KBAND=1, then AE(1) is the !> (1,2) and (2,1) element, SE(2) is the (2,3) and (3,2) !> element, etc. !>
U
!> U is COMPLEX*16 array, dimension (LDU, N) !> The unitary matrix in the decomposition. !>
LDU
!> LDU is INTEGER !> The leading dimension of U. LDU must be at least N. !>
WORK
!> WORK is COMPLEX*16 array, dimension (N**2) !>
RWORK
!> RWORK is DOUBLE PRECISION array, dimension (N) !>
RESULT
!> RESULT is DOUBLE PRECISION array, dimension (2) !> The values computed by the two tests described above. The !> values are currently limited to 1/ulp, to avoid overflow. !> RESULT(1) is always modified. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 131 of file zstt21.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |