table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/zrqt02.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/zrqt02.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/zrqt02.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine ZRQT02 (m, n, k, a, af, q, r, lda, tau, work,
lwork, rwork, result)
ZRQT02
Function/Subroutine Documentation¶
subroutine ZRQT02 (integer m, integer n, integer k, complex*16, dimension( lda, * ) a, complex*16, dimension( lda, * ) af, complex*16, dimension( lda, * ) q, complex*16, dimension( lda, * ) r, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( lwork ) work, integer lwork, double precision, dimension( * ) rwork, double precision, dimension( * ) result)¶
ZRQT02
Purpose:
!> !> ZRQT02 tests ZUNGRQ, which generates an m-by-n matrix Q with !> orthonormal rows that is defined as the product of k elementary !> reflectors. !> !> Given the RQ factorization of an m-by-n matrix A, ZRQT02 generates !> the orthogonal matrix Q defined by the factorization of the last k !> rows of A; it compares R(m-k+1:m,n-m+1:n) with !> A(m-k+1:m,1:n)*Q(n-m+1:n,1:n)', and checks that the rows of Q are !> orthonormal. !>
Parameters
M
!> M is INTEGER !> The number of rows of the matrix Q to be generated. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix Q to be generated. !> N >= M >= 0. !>
K
!> K is INTEGER !> The number of elementary reflectors whose product defines the !> matrix Q. M >= K >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> The m-by-n matrix A which was factorized by ZRQT01. !>
AF
!> AF is COMPLEX*16 array, dimension (LDA,N) !> Details of the RQ factorization of A, as returned by ZGERQF. !> See ZGERQF for further details. !>
Q
!> Q is COMPLEX*16 array, dimension (LDA,N) !>
R
!> R is COMPLEX*16 array, dimension (LDA,M) !>
LDA
!> LDA is INTEGER !> The leading dimension of the arrays A, AF, Q and L. LDA >= N. !>
TAU
!> TAU is COMPLEX*16 array, dimension (M) !> The scalar factors of the elementary reflectors corresponding !> to the RQ factorization in AF. !>
WORK
!> WORK is COMPLEX*16 array, dimension (LWORK) !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. !>
RWORK
!> RWORK is DOUBLE PRECISION array, dimension (M) !>
RESULT
!> RESULT is DOUBLE PRECISION array, dimension (2) !> The test ratios: !> RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS ) !> RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 134 of file zrqt02.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |