Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zlaev2.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zlaev2.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zlaev2.f

SYNOPSIS

Functions/Subroutines


subroutine ZLAEV2 (a, b, c, rt1, rt2, cs1, sn1)
ZLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.

Function/Subroutine Documentation

subroutine ZLAEV2 (complex*16 a, complex*16 b, complex*16 c, double precision rt1, double precision rt2, double precision cs1, complex*16 sn1)

ZLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.

Purpose:

!>
!> ZLAEV2 computes the eigendecomposition of a 2-by-2 Hermitian matrix
!>    [  A         B  ]
!>    [  CONJG(B)  C  ].
!> On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
!> eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
!> eigenvector for RT1, giving the decomposition
!>
!> [ CS1  CONJG(SN1) ] [    A     B ] [ CS1 -CONJG(SN1) ] = [ RT1  0  ]
!> [-SN1     CS1     ] [ CONJG(B) C ] [ SN1     CS1     ]   [  0  RT2 ].
!> 

Parameters

A

!>          A is COMPLEX*16
!>         The (1,1) element of the 2-by-2 matrix.
!> 

B

!>          B is COMPLEX*16
!>         The (1,2) element and the conjugate of the (2,1) element of
!>         the 2-by-2 matrix.
!> 

C

!>          C is COMPLEX*16
!>         The (2,2) element of the 2-by-2 matrix.
!> 

RT1

!>          RT1 is DOUBLE PRECISION
!>         The eigenvalue of larger absolute value.
!> 

RT2

!>          RT2 is DOUBLE PRECISION
!>         The eigenvalue of smaller absolute value.
!> 

CS1

!>          CS1 is DOUBLE PRECISION
!> 

SN1

!>          SN1 is COMPLEX*16
!>         The vector (CS1, SN1) is a unit right eigenvector for RT1.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  RT1 is accurate to a few ulps barring over/underflow.
!>
!>  RT2 may be inaccurate if there is massive cancellation in the
!>  determinant A*C-B*B; higher precision or correctly rounded or
!>  correctly truncated arithmetic would be needed to compute RT2
!>  accurately in all cases.
!>
!>  CS1 and SN1 are accurate to a few ulps barring over/underflow.
!>
!>  Overflow is possible only if RT1 is within a factor of 5 of overflow.
!>  Underflow is harmless if the input data is 0 or exceeds
!>     underflow_threshold / macheps.
!> 

Definition at line 120 of file zlaev2.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK