table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zlaev2.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zlaev2.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zlaev2.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine ZLAEV2 (a, b, c, rt1, rt2, cs1, sn1)
ZLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2
symmetric/Hermitian matrix.
Function/Subroutine Documentation¶
subroutine ZLAEV2 (complex*16 a, complex*16 b, complex*16 c, double precision rt1, double precision rt2, double precision cs1, complex*16 sn1)¶
ZLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.
Purpose:
!> !> ZLAEV2 computes the eigendecomposition of a 2-by-2 Hermitian matrix !> [ A B ] !> [ CONJG(B) C ]. !> On return, RT1 is the eigenvalue of larger absolute value, RT2 is the !> eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right !> eigenvector for RT1, giving the decomposition !> !> [ CS1 CONJG(SN1) ] [ A B ] [ CS1 -CONJG(SN1) ] = [ RT1 0 ] !> [-SN1 CS1 ] [ CONJG(B) C ] [ SN1 CS1 ] [ 0 RT2 ]. !>
Parameters
A
!> A is COMPLEX*16 !> The (1,1) element of the 2-by-2 matrix. !>
B
!> B is COMPLEX*16 !> The (1,2) element and the conjugate of the (2,1) element of !> the 2-by-2 matrix. !>
C
!> C is COMPLEX*16 !> The (2,2) element of the 2-by-2 matrix. !>
RT1
!> RT1 is DOUBLE PRECISION !> The eigenvalue of larger absolute value. !>
RT2
!> RT2 is DOUBLE PRECISION !> The eigenvalue of smaller absolute value. !>
CS1
!> CS1 is DOUBLE PRECISION !>
SN1
!> SN1 is COMPLEX*16 !> The vector (CS1, SN1) is a unit right eigenvector for RT1. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> RT1 is accurate to a few ulps barring over/underflow. !> !> RT2 may be inaccurate if there is massive cancellation in the !> determinant A*C-B*B; higher precision or correctly rounded or !> correctly truncated arithmetic would be needed to compute RT2 !> accurately in all cases. !> !> CS1 and SN1 are accurate to a few ulps barring over/underflow. !> !> Overflow is possible only if RT1 is within a factor of 5 of overflow. !> Underflow is harmless if the input data is 0 or exceeds !> underflow_threshold / macheps. !>
Definition at line 120 of file zlaev2.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |