Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/ssbgst.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/ssbgst.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/ssbgst.f

SYNOPSIS

Functions/Subroutines


subroutine SSBGST (vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, info)
SSBGST

Function/Subroutine Documentation

subroutine SSBGST (character vect, character uplo, integer n, integer ka, integer kb, real, dimension( ldab, * ) ab, integer ldab, real, dimension( ldbb, * ) bb, integer ldbb, real, dimension( ldx, * ) x, integer ldx, real, dimension( * ) work, integer info)

SSBGST

Purpose:

!>
!> SSBGST reduces a real symmetric-definite banded generalized
!> eigenproblem  A*x = lambda*B*x  to standard form  C*y = lambda*y,
!> such that C has the same bandwidth as A.
!>
!> B must have been previously factorized as S**T*S by SPBSTF, using a
!> split Cholesky factorization. A is overwritten by C = X**T*A*X, where
!> X = S**(-1)*Q and Q is an orthogonal matrix chosen to preserve the
!> bandwidth of A.
!> 

Parameters

VECT

!>          VECT is CHARACTER*1
!>          = 'N':  do not form the transformation matrix X;
!>          = 'V':  form X.
!> 

UPLO

!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The order of the matrices A and B.  N >= 0.
!> 

KA

!>          KA is INTEGER
!>          The number of superdiagonals of the matrix A if UPLO = 'U',
!>          or the number of subdiagonals if UPLO = 'L'.  KA >= 0.
!> 

KB

!>          KB is INTEGER
!>          The number of superdiagonals of the matrix B if UPLO = 'U',
!>          or the number of subdiagonals if UPLO = 'L'.  KA >= KB >= 0.
!> 

AB

!>          AB is REAL array, dimension (LDAB,N)
!>          On entry, the upper or lower triangle of the symmetric band
!>          matrix A, stored in the first ka+1 rows of the array.  The
!>          j-th column of A is stored in the j-th column of the array AB
!>          as follows:
!>          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
!>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
!>
!>          On exit, the transformed matrix X**T*A*X, stored in the same
!>          format as A.
!> 

LDAB

!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= KA+1.
!> 

BB

!>          BB is REAL array, dimension (LDBB,N)
!>          The banded factor S from the split Cholesky factorization of
!>          B, as returned by SPBSTF, stored in the first KB+1 rows of
!>          the array.
!> 

LDBB

!>          LDBB is INTEGER
!>          The leading dimension of the array BB.  LDBB >= KB+1.
!> 

X

!>          X is REAL array, dimension (LDX,N)
!>          If VECT = 'V', the n-by-n matrix X.
!>          If VECT = 'N', the array X is not referenced.
!> 

LDX

!>          LDX is INTEGER
!>          The leading dimension of the array X.
!>          LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise.
!> 

WORK

!>          WORK is REAL array, dimension (2*N)
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 157 of file ssbgst.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK