table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/sdrvst.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/sdrvst.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/sdrvst.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine SDRVST (nsizes, nn, ntypes, dotype, iseed,
thresh, nounit, a, lda, d1, d2, d3, d4, eveigs, wa1, wa2, wa3, u, ldu, v,
tau, z, work, lwork, iwork, liwork, result, info)
SDRVST
Function/Subroutine Documentation¶
subroutine SDRVST (integer nsizes, integer, dimension( * ) nn, integer ntypes, logical, dimension( * ) dotype, integer, dimension( 4 ) iseed, real thresh, integer nounit, real, dimension( lda, * ) a, integer lda, real, dimension( * ) d1, real, dimension( * ) d2, real, dimension( * ) d3, real, dimension( * ) d4, real, dimension( * ) eveigs, real, dimension( * ) wa1, real, dimension( * ) wa2, real, dimension( * ) wa3, real, dimension( ldu, * ) u, integer ldu, real, dimension( ldu, * ) v, real, dimension( * ) tau, real, dimension( ldu, * ) z, real, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, real, dimension( * ) result, integer info)¶
SDRVST
Purpose:
!> !> SDRVST checks the symmetric eigenvalue problem drivers. !> !> SSTEV computes all eigenvalues and, optionally, !> eigenvectors of a real symmetric tridiagonal matrix. !> !> SSTEVX computes selected eigenvalues and, optionally, !> eigenvectors of a real symmetric tridiagonal matrix. !> !> SSTEVR computes selected eigenvalues and, optionally, !> eigenvectors of a real symmetric tridiagonal matrix !> using the Relatively Robust Representation where it can. !> !> SSYEV computes all eigenvalues and, optionally, !> eigenvectors of a real symmetric matrix. !> !> SSYEVX computes selected eigenvalues and, optionally, !> eigenvectors of a real symmetric matrix. !> !> SSYEVR computes selected eigenvalues and, optionally, !> eigenvectors of a real symmetric matrix !> using the Relatively Robust Representation where it can. !> !> SSPEV computes all eigenvalues and, optionally, !> eigenvectors of a real symmetric matrix in packed !> storage. !> !> SSPEVX computes selected eigenvalues and, optionally, !> eigenvectors of a real symmetric matrix in packed !> storage. !> !> SSBEV computes all eigenvalues and, optionally, !> eigenvectors of a real symmetric band matrix. !> !> SSBEVX computes selected eigenvalues and, optionally, !> eigenvectors of a real symmetric band matrix. !> !> SSYEVD computes all eigenvalues and, optionally, !> eigenvectors of a real symmetric matrix using !> a divide and conquer algorithm. !> !> SSPEVD computes all eigenvalues and, optionally, !> eigenvectors of a real symmetric matrix in packed !> storage, using a divide and conquer algorithm. !> !> SSBEVD computes all eigenvalues and, optionally, !> eigenvectors of a real symmetric band matrix, !> using a divide and conquer algorithm. !> !> When SDRVST is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each type of matrix, one matrix will be generated and used !> to test the appropriate drivers. For each matrix and each !> driver routine called, the following tests will be performed: !> !> (1) | A - Z D Z' | / ( |A| n ulp ) !> !> (2) | I - Z Z' | / ( n ulp ) !> !> (3) | D1 - D2 | / ( |D1| ulp ) !> !> where Z is the matrix of eigenvectors returned when the !> eigenvector option is given and D1 and D2 are the eigenvalues !> returned with and without the eigenvector option. !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> !> (3) A diagonal matrix with evenly spaced eigenvalues !> 1, ..., ULP and random signs. !> (ULP = (first number larger than 1) - 1 ) !> (4) A diagonal matrix with geometrically spaced eigenvalues !> 1, ..., ULP and random signs. !> (5) A diagonal matrix with eigenvalues !> 1, ULP, ..., ULP and random signs. !> !> (6) Same as (4), but multiplied by SQRT( overflow threshold ) !> (7) Same as (4), but multiplied by SQRT( underflow threshold ) !> !> (8) A matrix of the form U' D U, where U is orthogonal and !> D has evenly spaced entries 1, ..., ULP with random signs !> on the diagonal. !> !> (9) A matrix of the form U' D U, where U is orthogonal and !> D has geometrically spaced entries 1, ..., ULP with random !> signs on the diagonal. !> !> (10) A matrix of the form U' D U, where U is orthogonal and !> D has entries 1, ULP,..., ULP with random !> signs on the diagonal. !> !> (11) Same as (8), but multiplied by SQRT( overflow threshold ) !> (12) Same as (8), but multiplied by SQRT( underflow threshold ) !> !> (13) Symmetric matrix with random entries chosen from (-1,1). !> (14) Same as (13), but multiplied by SQRT( overflow threshold ) !> (15) Same as (13), but multiplied by SQRT( underflow threshold ) !> (16) A band matrix with half bandwidth randomly chosen between !> 0 and N-1, with evenly spaced eigenvalues 1, ..., ULP !> with random signs. !> (17) Same as (16), but multiplied by SQRT( overflow threshold ) !> (18) Same as (16), but multiplied by SQRT( underflow threshold ) !>
!> NSIZES INTEGER !> The number of sizes of matrices to use. If it is zero, !> SDRVST does nothing. It must be at least zero. !> Not modified. !> !> NN INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> Not modified. !> !> NTYPES INTEGER !> The number of elements in DOTYPE. If it is zero, SDRVST !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> Not modified. !> !> DOTYPE LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> Not modified. !> !> ISEED INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to SDRVST to continue the same random number !> sequence. !> Modified. !> !> THRESH REAL !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> Not modified. !> !> NOUNIT INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> Not modified. !> !> A REAL array, dimension (LDA , max(NN)) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually !> used. !> Modified. !> !> LDA INTEGER !> The leading dimension of A. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> D1 REAL array, dimension (max(NN)) !> The eigenvalues of A, as computed by SSTEQR simultaneously !> with Z. On exit, the eigenvalues in D1 correspond with the !> matrix in A. !> Modified. !> !> D2 REAL array, dimension (max(NN)) !> The eigenvalues of A, as computed by SSTEQR if Z is not !> computed. On exit, the eigenvalues in D2 correspond with !> the matrix in A. !> Modified. !> !> D3 REAL array, dimension (max(NN)) !> The eigenvalues of A, as computed by SSTERF. On exit, the !> eigenvalues in D3 correspond with the matrix in A. !> Modified. !> !> D4 REAL array, dimension !> !> EVEIGS REAL array, dimension (max(NN)) !> The eigenvalues as computed by SSTEV('N', ... ) !> (I reserve the right to change this to the output of !> whichever algorithm computes the most accurate eigenvalues). !> !> WA1 REAL array, dimension !> !> WA2 REAL array, dimension !> !> WA3 REAL array, dimension !> !> U REAL array, dimension (LDU, max(NN)) !> The orthogonal matrix computed by SSYTRD + SORGTR. !> Modified. !> !> LDU INTEGER !> The leading dimension of U, Z, and V. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> V REAL array, dimension (LDU, max(NN)) !> The Housholder vectors computed by SSYTRD in reducing A to !> tridiagonal form. !> Modified. !> !> TAU REAL array, dimension (max(NN)) !> The Householder factors computed by SSYTRD in reducing A !> to tridiagonal form. !> Modified. !> !> Z REAL array, dimension (LDU, max(NN)) !> The orthogonal matrix of eigenvectors computed by SSTEQR, !> SPTEQR, and SSTEIN. !> Modified. !> !> WORK REAL array, dimension (LWORK) !> Workspace. !> Modified. !> !> LWORK INTEGER !> The number of entries in WORK. This must be at least !> 1 + 4 * Nmax + 2 * Nmax * lg Nmax + 4 * Nmax**2 !> where Nmax = max( NN(j), 2 ) and lg = log base 2. !> Not modified. !> !> IWORK INTEGER array, !> dimension (6 + 6*Nmax + 5 * Nmax * lg Nmax ) !> where Nmax = max( NN(j), 2 ) and lg = log base 2. !> Workspace. !> Modified. !> !> RESULT REAL array, dimension (105) !> The values computed by the tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> Modified. !> !> INFO INTEGER !> If 0, then everything ran OK. !> -1: NSIZES < 0 !> -2: Some NN(j) < 0 !> -3: NTYPES < 0 !> -5: THRESH < 0 !> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). !> -16: LDU < 1 or LDU < NMAX. !> -21: LWORK too small. !> If SLATMR, SLATMS, SSYTRD, SORGTR, SSTEQR, SSTERF, !> or SORMTR returns an error code, the !> absolute value of it is returned. !> Modified. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NTEST The number of tests performed, or which can !> be performed so far, for the current matrix. !> NTESTT The total number of tests performed so far. !> NMAX Largest value in NN. !> NMATS The number of matrices generated so far. !> NERRS The number of tests which have exceeded THRESH !> so far (computed by SLAFTS). !> COND, IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTOVFL, RTUNFL Square roots of the previous 2 values. !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !> !> The tests performed are: Routine tested !> 1= | A - U S U' | / ( |A| n ulp ) SSTEV('V', ... ) !> 2= | I - U U' | / ( n ulp ) SSTEV('V', ... ) !> 3= |D(with Z) - D(w/o Z)| / (|D| ulp) SSTEV('N', ... ) !> 4= | A - U S U' | / ( |A| n ulp ) SSTEVX('V','A', ... ) !> 5= | I - U U' | / ( n ulp ) SSTEVX('V','A', ... ) !> 6= |D(with Z) - EVEIGS| / (|D| ulp) SSTEVX('N','A', ... ) !> 7= | A - U S U' | / ( |A| n ulp ) SSTEVR('V','A', ... ) !> 8= | I - U U' | / ( n ulp ) SSTEVR('V','A', ... ) !> 9= |D(with Z) - EVEIGS| / (|D| ulp) SSTEVR('N','A', ... ) !> 10= | A - U S U' | / ( |A| n ulp ) SSTEVX('V','I', ... ) !> 11= | I - U U' | / ( n ulp ) SSTEVX('V','I', ... ) !> 12= |D(with Z) - D(w/o Z)| / (|D| ulp) SSTEVX('N','I', ... ) !> 13= | A - U S U' | / ( |A| n ulp ) SSTEVX('V','V', ... ) !> 14= | I - U U' | / ( n ulp ) SSTEVX('V','V', ... ) !> 15= |D(with Z) - D(w/o Z)| / (|D| ulp) SSTEVX('N','V', ... ) !> 16= | A - U S U' | / ( |A| n ulp ) SSTEVD('V', ... ) !> 17= | I - U U' | / ( n ulp ) SSTEVD('V', ... ) !> 18= |D(with Z) - EVEIGS| / (|D| ulp) SSTEVD('N', ... ) !> 19= | A - U S U' | / ( |A| n ulp ) SSTEVR('V','I', ... ) !> 20= | I - U U' | / ( n ulp ) SSTEVR('V','I', ... ) !> 21= |D(with Z) - D(w/o Z)| / (|D| ulp) SSTEVR('N','I', ... ) !> 22= | A - U S U' | / ( |A| n ulp ) SSTEVR('V','V', ... ) !> 23= | I - U U' | / ( n ulp ) SSTEVR('V','V', ... ) !> 24= |D(with Z) - D(w/o Z)| / (|D| ulp) SSTEVR('N','V', ... ) !> !> 25= | A - U S U' | / ( |A| n ulp ) SSYEV('L','V', ... ) !> 26= | I - U U' | / ( n ulp ) SSYEV('L','V', ... ) !> 27= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEV('L','N', ... ) !> 28= | A - U S U' | / ( |A| n ulp ) SSYEVX('L','V','A', ... ) !> 29= | I - U U' | / ( n ulp ) SSYEVX('L','V','A', ... ) !> 30= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVX('L','N','A', ... ) !> 31= | A - U S U' | / ( |A| n ulp ) SSYEVX('L','V','I', ... ) !> 32= | I - U U' | / ( n ulp ) SSYEVX('L','V','I', ... ) !> 33= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVX('L','N','I', ... ) !> 34= | A - U S U' | / ( |A| n ulp ) SSYEVX('L','V','V', ... ) !> 35= | I - U U' | / ( n ulp ) SSYEVX('L','V','V', ... ) !> 36= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVX('L','N','V', ... ) !> 37= | A - U S U' | / ( |A| n ulp ) SSPEV('L','V', ... ) !> 38= | I - U U' | / ( n ulp ) SSPEV('L','V', ... ) !> 39= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEV('L','N', ... ) !> 40= | A - U S U' | / ( |A| n ulp ) SSPEVX('L','V','A', ... ) !> 41= | I - U U' | / ( n ulp ) SSPEVX('L','V','A', ... ) !> 42= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVX('L','N','A', ... ) !> 43= | A - U S U' | / ( |A| n ulp ) SSPEVX('L','V','I', ... ) !> 44= | I - U U' | / ( n ulp ) SSPEVX('L','V','I', ... ) !> 45= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVX('L','N','I', ... ) !> 46= | A - U S U' | / ( |A| n ulp ) SSPEVX('L','V','V', ... ) !> 47= | I - U U' | / ( n ulp ) SSPEVX('L','V','V', ... ) !> 48= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVX('L','N','V', ... ) !> 49= | A - U S U' | / ( |A| n ulp ) SSBEV('L','V', ... ) !> 50= | I - U U' | / ( n ulp ) SSBEV('L','V', ... ) !> 51= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEV('L','N', ... ) !> 52= | A - U S U' | / ( |A| n ulp ) SSBEVX('L','V','A', ... ) !> 53= | I - U U' | / ( n ulp ) SSBEVX('L','V','A', ... ) !> 54= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVX('L','N','A', ... ) !> 55= | A - U S U' | / ( |A| n ulp ) SSBEVX('L','V','I', ... ) !> 56= | I - U U' | / ( n ulp ) SSBEVX('L','V','I', ... ) !> 57= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVX('L','N','I', ... ) !> 58= | A - U S U' | / ( |A| n ulp ) SSBEVX('L','V','V', ... ) !> 59= | I - U U' | / ( n ulp ) SSBEVX('L','V','V', ... ) !> 60= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVX('L','N','V', ... ) !> 61= | A - U S U' | / ( |A| n ulp ) SSYEVD('L','V', ... ) !> 62= | I - U U' | / ( n ulp ) SSYEVD('L','V', ... ) !> 63= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVD('L','N', ... ) !> 64= | A - U S U' | / ( |A| n ulp ) SSPEVD('L','V', ... ) !> 65= | I - U U' | / ( n ulp ) SSPEVD('L','V', ... ) !> 66= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVD('L','N', ... ) !> 67= | A - U S U' | / ( |A| n ulp ) SSBEVD('L','V', ... ) !> 68= | I - U U' | / ( n ulp ) SSBEVD('L','V', ... ) !> 69= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVD('L','N', ... ) !> 70= | A - U S U' | / ( |A| n ulp ) SSYEVR('L','V','A', ... ) !> 71= | I - U U' | / ( n ulp ) SSYEVR('L','V','A', ... ) !> 72= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVR('L','N','A', ... ) !> 73= | A - U S U' | / ( |A| n ulp ) SSYEVR('L','V','I', ... ) !> 74= | I - U U' | / ( n ulp ) SSYEVR('L','V','I', ... ) !> 75= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVR('L','N','I', ... ) !> 76= | A - U S U' | / ( |A| n ulp ) SSYEVR('L','V','V', ... ) !> 77= | I - U U' | / ( n ulp ) SSYEVR('L','V','V', ... ) !> 78= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVR('L','N','V', ... ) !> !> Tests 25 through 78 are repeated (as tests 79 through 132) !> with UPLO='U' !> !> To be added in 1999 !> !> 79= | A - U S U' | / ( |A| n ulp ) SSPEVR('L','V','A', ... ) !> 80= | I - U U' | / ( n ulp ) SSPEVR('L','V','A', ... ) !> 81= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVR('L','N','A', ... ) !> 82= | A - U S U' | / ( |A| n ulp ) SSPEVR('L','V','I', ... ) !> 83= | I - U U' | / ( n ulp ) SSPEVR('L','V','I', ... ) !> 84= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVR('L','N','I', ... ) !> 85= | A - U S U' | / ( |A| n ulp ) SSPEVR('L','V','V', ... ) !> 86= | I - U U' | / ( n ulp ) SSPEVR('L','V','V', ... ) !> 87= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVR('L','N','V', ... ) !> 88= | A - U S U' | / ( |A| n ulp ) SSBEVR('L','V','A', ... ) !> 89= | I - U U' | / ( n ulp ) SSBEVR('L','V','A', ... ) !> 90= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVR('L','N','A', ... ) !> 91= | A - U S U' | / ( |A| n ulp ) SSBEVR('L','V','I', ... ) !> 92= | I - U U' | / ( n ulp ) SSBEVR('L','V','I', ... ) !> 93= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVR('L','N','I', ... ) !> 94= | A - U S U' | / ( |A| n ulp ) SSBEVR('L','V','V', ... ) !> 95= | I - U U' | / ( n ulp ) SSBEVR('L','V','V', ... ) !> 96= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVR('L','N','V', ... ) !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 449 of file sdrvst.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |