table of contents
| ptts2(3) | Library Functions Manual | ptts2(3) |
NAME¶
ptts2 - ptts2: triangular solve using factor, unblocked
SYNOPSIS¶
Functions¶
subroutine CPTTS2 (iuplo, n, nrhs, d, e, b, ldb)
CPTTS2 solves a tridiagonal system of the form AX=B using the L D LH
factorization computed by spttrf. subroutine DPTTS2 (n, nrhs, d, e,
b, ldb)
DPTTS2 solves a tridiagonal system of the form AX=B using the L D LH
factorization computed by spttrf. subroutine SPTTS2 (n, nrhs, d, e,
b, ldb)
SPTTS2 solves a tridiagonal system of the form AX=B using the L D LH
factorization computed by spttrf. subroutine ZPTTS2 (iuplo, n, nrhs,
d, e, b, ldb)
ZPTTS2 solves a tridiagonal system of the form AX=B using the L D LH
factorization computed by spttrf.
Detailed Description¶
Function Documentation¶
subroutine CPTTS2 (integer iuplo, integer n, integer nrhs, real, dimension( * ) d, complex, dimension( * ) e, complex, dimension( ldb, * ) b, integer ldb)¶
CPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf.
Purpose:
!> !> CPTTS2 solves a tridiagonal system of the form !> A * X = B !> using the factorization A = U**H*D*U or A = L*D*L**H computed by CPTTRF. !> D is a diagonal matrix specified in the vector D, U (or L) is a unit !> bidiagonal matrix whose superdiagonal (subdiagonal) is specified in !> the vector E, and X and B are N by NRHS matrices. !>
Parameters
!> IUPLO is INTEGER !> Specifies the form of the factorization and whether the !> vector E is the superdiagonal of the upper bidiagonal factor !> U or the subdiagonal of the lower bidiagonal factor L. !> = 1: A = U**H *D*U, E is the superdiagonal of U !> = 0: A = L*D*L**H, E is the subdiagonal of L !>
N
!> N is INTEGER !> The order of the tridiagonal matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
D
!> D is REAL array, dimension (N) !> The n diagonal elements of the diagonal matrix D from the !> factorization A = U**H *D*U or A = L*D*L**H. !>
E
!> E is COMPLEX array, dimension (N-1) !> If IUPLO = 1, the (n-1) superdiagonal elements of the unit !> bidiagonal factor U from the factorization A = U**H*D*U. !> If IUPLO = 0, the (n-1) subdiagonal elements of the unit !> bidiagonal factor L from the factorization A = L*D*L**H. !>
B
!> B is COMPLEX array, dimension (LDB,NRHS) !> On entry, the right hand side vectors B for the system of !> linear equations. !> On exit, the solution vectors, X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 112 of file cptts2.f.
subroutine DPTTS2 (integer n, integer nrhs, double precision, dimension( * ) d, double precision, dimension( * ) e, double precision, dimension( ldb, * ) b, integer ldb)¶
DPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf.
Purpose:
!> !> DPTTS2 solves a tridiagonal system of the form !> A * X = B !> using the L*D*L**T factorization of A computed by DPTTRF. D is a !> diagonal matrix specified in the vector D, L is a unit bidiagonal !> matrix whose subdiagonal is specified in the vector E, and X and B !> are N by NRHS matrices. !>
Parameters
!> N is INTEGER !> The order of the tridiagonal matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
D
!> D is DOUBLE PRECISION array, dimension (N) !> The n diagonal elements of the diagonal matrix D from the !> L*D*L**T factorization of A. !>
E
!> E is DOUBLE PRECISION array, dimension (N-1) !> The (n-1) subdiagonal elements of the unit bidiagonal factor !> L from the L*D*L**T factorization of A. E can also be regarded !> as the superdiagonal of the unit bidiagonal factor U from the !> factorization A = U**T*D*U. !>
B
!> B is DOUBLE PRECISION array, dimension (LDB,NRHS) !> On entry, the right hand side vectors B for the system of !> linear equations. !> On exit, the solution vectors, X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 101 of file dptts2.f.
subroutine SPTTS2 (integer n, integer nrhs, real, dimension( * ) d, real, dimension( * ) e, real, dimension( ldb, * ) b, integer ldb)¶
SPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf.
Purpose:
!> !> SPTTS2 solves a tridiagonal system of the form !> A * X = B !> using the L*D*L**T factorization of A computed by SPTTRF. D is a !> diagonal matrix specified in the vector D, L is a unit bidiagonal !> matrix whose subdiagonal is specified in the vector E, and X and B !> are N by NRHS matrices. !>
Parameters
!> N is INTEGER !> The order of the tridiagonal matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
D
!> D is REAL array, dimension (N) !> The n diagonal elements of the diagonal matrix D from the !> L*D*L**T factorization of A. !>
E
!> E is REAL array, dimension (N-1) !> The (n-1) subdiagonal elements of the unit bidiagonal factor !> L from the L*D*L**T factorization of A. E can also be regarded !> as the superdiagonal of the unit bidiagonal factor U from the !> factorization A = U**T*D*U. !>
B
!> B is REAL array, dimension (LDB,NRHS) !> On entry, the right hand side vectors B for the system of !> linear equations. !> On exit, the solution vectors, X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 101 of file sptts2.f.
subroutine ZPTTS2 (integer iuplo, integer n, integer nrhs, double precision, dimension( * ) d, complex*16, dimension( * ) e, complex*16, dimension( ldb, * ) b, integer ldb)¶
ZPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf.
Purpose:
!> !> ZPTTS2 solves a tridiagonal system of the form !> A * X = B !> using the factorization A = U**H *D*U or A = L*D*L**H computed by ZPTTRF. !> D is a diagonal matrix specified in the vector D, U (or L) is a unit !> bidiagonal matrix whose superdiagonal (subdiagonal) is specified in !> the vector E, and X and B are N by NRHS matrices. !>
Parameters
!> IUPLO is INTEGER !> Specifies the form of the factorization and whether the !> vector E is the superdiagonal of the upper bidiagonal factor !> U or the subdiagonal of the lower bidiagonal factor L. !> = 1: A = U**H *D*U, E is the superdiagonal of U !> = 0: A = L*D*L**H, E is the subdiagonal of L !>
N
!> N is INTEGER !> The order of the tridiagonal matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
D
!> D is DOUBLE PRECISION array, dimension (N) !> The n diagonal elements of the diagonal matrix D from the !> factorization A = U**H *D*U or A = L*D*L**H. !>
E
!> E is COMPLEX*16 array, dimension (N-1) !> If IUPLO = 1, the (n-1) superdiagonal elements of the unit !> bidiagonal factor U from the factorization A = U**H*D*U. !> If IUPLO = 0, the (n-1) subdiagonal elements of the unit !> bidiagonal factor L from the factorization A = L*D*L**H. !>
B
!> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the right hand side vectors B for the system of !> linear equations. !> On exit, the solution vectors, X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 112 of file zptts2.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
| Version 3.12.0 | LAPACK |