table of contents
largv(3) | Library Functions Manual | largv(3) |
NAME¶
largv - largv: generate vector of plane rotations
SYNOPSIS¶
Functions¶
subroutine CLARGV (n, x, incx, y, incy, c, incc)
CLARGV generates a vector of plane rotations with real cosines and
complex sines. subroutine DLARGV (n, x, incx, y, incy, c, incc)
DLARGV generates a vector of plane rotations with real cosines and real
sines. subroutine SLARGV (n, x, incx, y, incy, c, incc)
SLARGV generates a vector of plane rotations with real cosines and real
sines. subroutine ZLARGV (n, x, incx, y, incy, c, incc)
ZLARGV generates a vector of plane rotations with real cosines and
complex sines.
Detailed Description¶
Function Documentation¶
subroutine CLARGV (integer n, complex, dimension( * ) x, integer incx, complex, dimension( * ) y, integer incy, real, dimension( * ) c, integer incc)¶
CLARGV generates a vector of plane rotations with real cosines and complex sines.
Purpose:
!> !> CLARGV generates a vector of complex plane rotations with real !> cosines, determined by elements of the complex vectors x and y. !> For i = 1,2,...,n !> !> ( c(i) s(i) ) ( x(i) ) = ( r(i) ) !> ( -conjg(s(i)) c(i) ) ( y(i) ) = ( 0 ) !> !> where c(i)**2 + ABS(s(i))**2 = 1 !> !> The following conventions are used (these are the same as in CLARTG, !> but differ from the BLAS1 routine CROTG): !> If y(i)=0, then c(i)=1 and s(i)=0. !> If x(i)=0, then c(i)=0 and s(i) is chosen so that r(i) is real. !>
Parameters
!> N is INTEGER !> The number of plane rotations to be generated. !>
X
!> X is COMPLEX array, dimension (1+(N-1)*INCX) !> On entry, the vector x. !> On exit, x(i) is overwritten by r(i), for i = 1,...,n. !>
INCX
!> INCX is INTEGER !> The increment between elements of X. INCX > 0. !>
Y
!> Y is COMPLEX array, dimension (1+(N-1)*INCY) !> On entry, the vector y. !> On exit, the sines of the plane rotations. !>
INCY
!> INCY is INTEGER !> The increment between elements of Y. INCY > 0. !>
C
!> C is REAL array, dimension (1+(N-1)*INCC) !> The cosines of the plane rotations. !>
INCC
!> INCC is INTEGER !> The increment between elements of C. INCC > 0. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> 6-6-96 - Modified with a new algorithm by W. Kahan and J. Demmel !> !> This version has a few statements commented out for thread safety !> (machine parameters are computed on each entry). 10 feb 03, SJH. !>
Definition at line 121 of file clargv.f.
subroutine DLARGV (integer n, double precision, dimension( * ) x, integer incx, double precision, dimension( * ) y, integer incy, double precision, dimension( * ) c, integer incc)¶
DLARGV generates a vector of plane rotations with real cosines and real sines.
Purpose:
!> !> DLARGV generates a vector of real plane rotations, determined by !> elements of the real vectors x and y. For i = 1,2,...,n !> !> ( c(i) s(i) ) ( x(i) ) = ( a(i) ) !> ( -s(i) c(i) ) ( y(i) ) = ( 0 ) !>
Parameters
!> N is INTEGER !> The number of plane rotations to be generated. !>
X
!> X is DOUBLE PRECISION array, !> dimension (1+(N-1)*INCX) !> On entry, the vector x. !> On exit, x(i) is overwritten by a(i), for i = 1,...,n. !>
INCX
!> INCX is INTEGER !> The increment between elements of X. INCX > 0. !>
Y
!> Y is DOUBLE PRECISION array, !> dimension (1+(N-1)*INCY) !> On entry, the vector y. !> On exit, the sines of the plane rotations. !>
INCY
!> INCY is INTEGER !> The increment between elements of Y. INCY > 0. !>
C
!> C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC) !> The cosines of the plane rotations. !>
INCC
!> INCC is INTEGER !> The increment between elements of C. INCC > 0. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 103 of file dlargv.f.
subroutine SLARGV (integer n, real, dimension( * ) x, integer incx, real, dimension( * ) y, integer incy, real, dimension( * ) c, integer incc)¶
SLARGV generates a vector of plane rotations with real cosines and real sines.
Purpose:
!> !> SLARGV generates a vector of real plane rotations, determined by !> elements of the real vectors x and y. For i = 1,2,...,n !> !> ( c(i) s(i) ) ( x(i) ) = ( a(i) ) !> ( -s(i) c(i) ) ( y(i) ) = ( 0 ) !>
Parameters
!> N is INTEGER !> The number of plane rotations to be generated. !>
X
!> X is REAL array, !> dimension (1+(N-1)*INCX) !> On entry, the vector x. !> On exit, x(i) is overwritten by a(i), for i = 1,...,n. !>
INCX
!> INCX is INTEGER !> The increment between elements of X. INCX > 0. !>
Y
!> Y is REAL array, !> dimension (1+(N-1)*INCY) !> On entry, the vector y. !> On exit, the sines of the plane rotations. !>
INCY
!> INCY is INTEGER !> The increment between elements of Y. INCY > 0. !>
C
!> C is REAL array, dimension (1+(N-1)*INCC) !> The cosines of the plane rotations. !>
INCC
!> INCC is INTEGER !> The increment between elements of C. INCC > 0. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 103 of file slargv.f.
subroutine ZLARGV (integer n, complex*16, dimension( * ) x, integer incx, complex*16, dimension( * ) y, integer incy, double precision, dimension( * ) c, integer incc)¶
ZLARGV generates a vector of plane rotations with real cosines and complex sines.
Purpose:
!> !> ZLARGV generates a vector of complex plane rotations with real !> cosines, determined by elements of the complex vectors x and y. !> For i = 1,2,...,n !> !> ( c(i) s(i) ) ( x(i) ) = ( r(i) ) !> ( -conjg(s(i)) c(i) ) ( y(i) ) = ( 0 ) !> !> where c(i)**2 + ABS(s(i))**2 = 1 !> !> The following conventions are used (these are the same as in ZLARTG, !> but differ from the BLAS1 routine ZROTG): !> If y(i)=0, then c(i)=1 and s(i)=0. !> If x(i)=0, then c(i)=0 and s(i) is chosen so that r(i) is real. !>
Parameters
!> N is INTEGER !> The number of plane rotations to be generated. !>
X
!> X is COMPLEX*16 array, dimension (1+(N-1)*INCX) !> On entry, the vector x. !> On exit, x(i) is overwritten by r(i), for i = 1,...,n. !>
INCX
!> INCX is INTEGER !> The increment between elements of X. INCX > 0. !>
Y
!> Y is COMPLEX*16 array, dimension (1+(N-1)*INCY) !> On entry, the vector y. !> On exit, the sines of the plane rotations. !>
INCY
!> INCY is INTEGER !> The increment between elements of Y. INCY > 0. !>
C
!> C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC) !> The cosines of the plane rotations. !>
INCC
!> INCC is INTEGER !> The increment between elements of C. INCC > 0. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> 6-6-96 - Modified with a new algorithm by W. Kahan and J. Demmel !> !> This version has a few statements commented out for thread safety !> (machine parameters are computed on each entry). 10 feb 03, SJH. !>
Definition at line 121 of file zlargv.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |