table of contents
| larfgp(3) | Library Functions Manual | larfgp(3) |
NAME¶
larfgp - larfgp: generate Householder reflector, beta ≥ 0
SYNOPSIS¶
Functions¶
subroutine CLARFGP (n, alpha, x, incx, tau)
CLARFGP generates an elementary reflector (Householder matrix) with
non-negative beta. subroutine DLARFGP (n, alpha, x, incx, tau)
DLARFGP generates an elementary reflector (Householder matrix) with
non-negative beta. subroutine SLARFGP (n, alpha, x, incx, tau)
SLARFGP generates an elementary reflector (Householder matrix) with
non-negative beta. subroutine ZLARFGP (n, alpha, x, incx, tau)
ZLARFGP generates an elementary reflector (Householder matrix) with
non-negative beta.
Detailed Description¶
Function Documentation¶
subroutine CLARFGP (integer n, complex alpha, complex, dimension( * ) x, integer incx, complex tau)¶
CLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
Purpose:
!> !> CLARFGP generates a complex elementary reflector H of order n, such !> that !> !> H**H * ( alpha ) = ( beta ), H**H * H = I. !> ( x ) ( 0 ) !> !> where alpha and beta are scalars, beta is real and non-negative, and !> x is an (n-1)-element complex vector. H is represented in the form !> !> H = I - tau * ( 1 ) * ( 1 v**H ) , !> ( v ) !> !> where tau is a complex scalar and v is a complex (n-1)-element !> vector. Note that H is not hermitian. !> !> If the elements of x are all zero and alpha is real, then tau = 0 !> and H is taken to be the unit matrix. !>
Parameters
!> N is INTEGER !> The order of the elementary reflector. !>
ALPHA
!> ALPHA is COMPLEX !> On entry, the value alpha. !> On exit, it is overwritten with the value beta. !>
X
!> X is COMPLEX array, dimension !> (1+(N-2)*abs(INCX)) !> On entry, the vector x. !> On exit, it is overwritten with the vector v. !>
INCX
!> INCX is INTEGER !> The increment between elements of X. INCX > 0. !>
TAU
!> TAU is COMPLEX !> The value tau. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 103 of file clarfgp.f.
subroutine DLARFGP (integer n, double precision alpha, double precision, dimension( * ) x, integer incx, double precision tau)¶
DLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
Purpose:
!> !> DLARFGP generates a real elementary reflector H of order n, such !> that !> !> H * ( alpha ) = ( beta ), H**T * H = I. !> ( x ) ( 0 ) !> !> where alpha and beta are scalars, beta is non-negative, and x is !> an (n-1)-element real vector. H is represented in the form !> !> H = I - tau * ( 1 ) * ( 1 v**T ) , !> ( v ) !> !> where tau is a real scalar and v is a real (n-1)-element !> vector. !> !> If the elements of x are all zero, then tau = 0 and H is taken to be !> the unit matrix. !>
Parameters
!> N is INTEGER !> The order of the elementary reflector. !>
ALPHA
!> ALPHA is DOUBLE PRECISION !> On entry, the value alpha. !> On exit, it is overwritten with the value beta. !>
X
!> X is DOUBLE PRECISION array, dimension !> (1+(N-2)*abs(INCX)) !> On entry, the vector x. !> On exit, it is overwritten with the vector v. !>
INCX
!> INCX is INTEGER !> The increment between elements of X. INCX > 0. !>
TAU
!> TAU is DOUBLE PRECISION !> The value tau. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 103 of file dlarfgp.f.
subroutine SLARFGP (integer n, real alpha, real, dimension( * ) x, integer incx, real tau)¶
SLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
Purpose:
!> !> SLARFGP generates a real elementary reflector H of order n, such !> that !> !> H * ( alpha ) = ( beta ), H**T * H = I. !> ( x ) ( 0 ) !> !> where alpha and beta are scalars, beta is non-negative, and x is !> an (n-1)-element real vector. H is represented in the form !> !> H = I - tau * ( 1 ) * ( 1 v**T ) , !> ( v ) !> !> where tau is a real scalar and v is a real (n-1)-element !> vector. !> !> If the elements of x are all zero, then tau = 0 and H is taken to be !> the unit matrix. !>
Parameters
!> N is INTEGER !> The order of the elementary reflector. !>
ALPHA
!> ALPHA is REAL !> On entry, the value alpha. !> On exit, it is overwritten with the value beta. !>
X
!> X is REAL array, dimension !> (1+(N-2)*abs(INCX)) !> On entry, the vector x. !> On exit, it is overwritten with the vector v. !>
INCX
!> INCX is INTEGER !> The increment between elements of X. INCX > 0. !>
TAU
!> TAU is REAL !> The value tau. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 103 of file slarfgp.f.
subroutine ZLARFGP (integer n, complex*16 alpha, complex*16, dimension( * ) x, integer incx, complex*16 tau)¶
ZLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
Purpose:
!> !> ZLARFGP generates a complex elementary reflector H of order n, such !> that !> !> H**H * ( alpha ) = ( beta ), H**H * H = I. !> ( x ) ( 0 ) !> !> where alpha and beta are scalars, beta is real and non-negative, and !> x is an (n-1)-element complex vector. H is represented in the form !> !> H = I - tau * ( 1 ) * ( 1 v**H ) , !> ( v ) !> !> where tau is a complex scalar and v is a complex (n-1)-element !> vector. Note that H is not hermitian. !> !> If the elements of x are all zero and alpha is real, then tau = 0 !> and H is taken to be the unit matrix. !>
Parameters
!> N is INTEGER !> The order of the elementary reflector. !>
ALPHA
!> ALPHA is COMPLEX*16 !> On entry, the value alpha. !> On exit, it is overwritten with the value beta. !>
X
!> X is COMPLEX*16 array, dimension !> (1+(N-2)*abs(INCX)) !> On entry, the vector x. !> On exit, it is overwritten with the vector v. !>
INCX
!> INCX is INTEGER !> The increment between elements of X. INCX > 0. !>
TAU
!> TAU is COMPLEX*16 !> The value tau. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 103 of file zlarfgp.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
| Version 3.12.0 | LAPACK |