table of contents
| lar2v(3) | Library Functions Manual | lar2v(3) |
NAME¶
lar2v - lar2v: apply vector of plane rotations to 2x2 matrices
SYNOPSIS¶
Functions¶
subroutine CLAR2V (n, x, y, z, incx, c, s, incc)
CLAR2V applies a vector of plane rotations with real cosines and
complex sines from both sides to a sequence of 2-by-2 symmetric/Hermitian
matrices. subroutine DLAR2V (n, x, y, z, incx, c, s, incc)
DLAR2V applies a vector of plane rotations with real cosines and real
sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices.
subroutine SLAR2V (n, x, y, z, incx, c, s, incc)
SLAR2V applies a vector of plane rotations with real cosines and real
sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices.
subroutine ZLAR2V (n, x, y, z, incx, c, s, incc)
ZLAR2V applies a vector of plane rotations with real cosines and
complex sines from both sides to a sequence of 2-by-2 symmetric/Hermitian
matrices.
Detailed Description¶
Function Documentation¶
subroutine CLAR2V (integer n, complex, dimension( * ) x, complex, dimension( * ) y, complex, dimension( * ) z, integer incx, real, dimension( * ) c, complex, dimension( * ) s, integer incc)¶
CLAR2V applies a vector of plane rotations with real cosines and complex sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices.
Purpose:
!> !> CLAR2V applies a vector of complex plane rotations with real cosines !> from both sides to a sequence of 2-by-2 complex Hermitian matrices, !> defined by the elements of the vectors x, y and z. For i = 1,2,...,n !> !> ( x(i) z(i) ) := !> ( conjg(z(i)) y(i) ) !> !> ( c(i) conjg(s(i)) ) ( x(i) z(i) ) ( c(i) -conjg(s(i)) ) !> ( -s(i) c(i) ) ( conjg(z(i)) y(i) ) ( s(i) c(i) ) !>
Parameters
!> N is INTEGER !> The number of plane rotations to be applied. !>
X
!> X is COMPLEX array, dimension (1+(N-1)*INCX) !> The vector x; the elements of x are assumed to be real. !>
Y
!> Y is COMPLEX array, dimension (1+(N-1)*INCX) !> The vector y; the elements of y are assumed to be real. !>
Z
!> Z is COMPLEX array, dimension (1+(N-1)*INCX) !> The vector z. !>
INCX
!> INCX is INTEGER !> The increment between elements of X, Y and Z. INCX > 0. !>
C
!> C is REAL array, dimension (1+(N-1)*INCC) !> The cosines of the plane rotations. !>
S
!> S is COMPLEX array, dimension (1+(N-1)*INCC) !> The sines of the plane rotations. !>
INCC
!> INCC is INTEGER !> The increment between elements of C and S. INCC > 0. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 110 of file clar2v.f.
subroutine DLAR2V (integer n, double precision, dimension( * ) x, double precision, dimension( * ) y, double precision, dimension( * ) z, integer incx, double precision, dimension( * ) c, double precision, dimension( * ) s, integer incc)¶
DLAR2V applies a vector of plane rotations with real cosines and real sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices.
Purpose:
!> !> DLAR2V applies a vector of real plane rotations from both sides to !> a sequence of 2-by-2 real symmetric matrices, defined by the elements !> of the vectors x, y and z. For i = 1,2,...,n !> !> ( x(i) z(i) ) := ( c(i) s(i) ) ( x(i) z(i) ) ( c(i) -s(i) ) !> ( z(i) y(i) ) ( -s(i) c(i) ) ( z(i) y(i) ) ( s(i) c(i) ) !>
Parameters
!> N is INTEGER !> The number of plane rotations to be applied. !>
X
!> X is DOUBLE PRECISION array, !> dimension (1+(N-1)*INCX) !> The vector x. !>
Y
!> Y is DOUBLE PRECISION array, !> dimension (1+(N-1)*INCX) !> The vector y. !>
Z
!> Z is DOUBLE PRECISION array, !> dimension (1+(N-1)*INCX) !> The vector z. !>
INCX
!> INCX is INTEGER !> The increment between elements of X, Y and Z. INCX > 0. !>
C
!> C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC) !> The cosines of the plane rotations. !>
S
!> S is DOUBLE PRECISION array, dimension (1+(N-1)*INCC) !> The sines of the plane rotations. !>
INCC
!> INCC is INTEGER !> The increment between elements of C and S. INCC > 0. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 109 of file dlar2v.f.
subroutine SLAR2V (integer n, real, dimension( * ) x, real, dimension( * ) y, real, dimension( * ) z, integer incx, real, dimension( * ) c, real, dimension( * ) s, integer incc)¶
SLAR2V applies a vector of plane rotations with real cosines and real sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices.
Purpose:
!> !> SLAR2V applies a vector of real plane rotations from both sides to !> a sequence of 2-by-2 real symmetric matrices, defined by the elements !> of the vectors x, y and z. For i = 1,2,...,n !> !> ( x(i) z(i) ) := ( c(i) s(i) ) ( x(i) z(i) ) ( c(i) -s(i) ) !> ( z(i) y(i) ) ( -s(i) c(i) ) ( z(i) y(i) ) ( s(i) c(i) ) !>
Parameters
!> N is INTEGER !> The number of plane rotations to be applied. !>
X
!> X is REAL array, !> dimension (1+(N-1)*INCX) !> The vector x. !>
Y
!> Y is REAL array, !> dimension (1+(N-1)*INCX) !> The vector y. !>
Z
!> Z is REAL array, !> dimension (1+(N-1)*INCX) !> The vector z. !>
INCX
!> INCX is INTEGER !> The increment between elements of X, Y and Z. INCX > 0. !>
C
!> C is REAL array, dimension (1+(N-1)*INCC) !> The cosines of the plane rotations. !>
S
!> S is REAL array, dimension (1+(N-1)*INCC) !> The sines of the plane rotations. !>
INCC
!> INCC is INTEGER !> The increment between elements of C and S. INCC > 0. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 109 of file slar2v.f.
subroutine ZLAR2V (integer n, complex*16, dimension( * ) x, complex*16, dimension( * ) y, complex*16, dimension( * ) z, integer incx, double precision, dimension( * ) c, complex*16, dimension( * ) s, integer incc)¶
ZLAR2V applies a vector of plane rotations with real cosines and complex sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices.
Purpose:
!> !> ZLAR2V applies a vector of complex plane rotations with real cosines !> from both sides to a sequence of 2-by-2 complex Hermitian matrices, !> defined by the elements of the vectors x, y and z. For i = 1,2,...,n !> !> ( x(i) z(i) ) := !> ( conjg(z(i)) y(i) ) !> !> ( c(i) conjg(s(i)) ) ( x(i) z(i) ) ( c(i) -conjg(s(i)) ) !> ( -s(i) c(i) ) ( conjg(z(i)) y(i) ) ( s(i) c(i) ) !>
Parameters
!> N is INTEGER !> The number of plane rotations to be applied. !>
X
!> X is COMPLEX*16 array, dimension (1+(N-1)*INCX) !> The vector x; the elements of x are assumed to be real. !>
Y
!> Y is COMPLEX*16 array, dimension (1+(N-1)*INCX) !> The vector y; the elements of y are assumed to be real. !>
Z
!> Z is COMPLEX*16 array, dimension (1+(N-1)*INCX) !> The vector z. !>
INCX
!> INCX is INTEGER !> The increment between elements of X, Y and Z. INCX > 0. !>
C
!> C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC) !> The cosines of the plane rotations. !>
S
!> S is COMPLEX*16 array, dimension (1+(N-1)*INCC) !> The sines of the plane rotations. !>
INCC
!> INCC is INTEGER !> The increment between elements of C and S. INCC > 0. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 110 of file zlar2v.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
| Version 3.12.0 | LAPACK |