table of contents
| lanht(3) | Library Functions Manual | lanht(3) |
NAME¶
lanht - lan{ht,st}: Hermitian/symmetric matrix, tridiagonal
SYNOPSIS¶
Functions¶
real function CLANHT (norm, n, d, e)
CLANHT returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a complex
Hermitian tridiagonal matrix. double precision function DLANST (norm,
n, d, e)
DLANST returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a real symmetric
tridiagonal matrix. real function SLANST (norm, n, d, e)
SLANST returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a real symmetric
tridiagonal matrix. double precision function ZLANHT (norm, n, d, e)
ZLANHT returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a complex
Hermitian tridiagonal matrix.
Detailed Description¶
Function Documentation¶
real function CLANHT (character norm, integer n, real, dimension( * ) d, complex, dimension( * ) e)¶
CLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian tridiagonal matrix.
Purpose:
!> !> CLANHT returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> complex Hermitian tridiagonal matrix A. !>
Returns
!> !> CLANHT = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. !>
Parameters
!> NORM is CHARACTER*1 !> Specifies the value to be returned in CLANHT as described !> above. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. When N = 0, CLANHT is !> set to zero. !>
D
!> D is REAL array, dimension (N) !> The diagonal elements of A. !>
E
!> E is COMPLEX array, dimension (N-1) !> The (n-1) sub-diagonal or super-diagonal elements of A. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 100 of file clanht.f.
double precision function DLANST (character norm, integer n, double precision, dimension( * ) d, double precision, dimension( * ) e)¶
DLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix.
Purpose:
!> !> DLANST returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> real symmetric tridiagonal matrix A. !>
Returns
!> !> DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. !>
Parameters
!> NORM is CHARACTER*1 !> Specifies the value to be returned in DLANST as described !> above. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. When N = 0, DLANST is !> set to zero. !>
D
!> D is DOUBLE PRECISION array, dimension (N) !> The diagonal elements of A. !>
E
!> E is DOUBLE PRECISION array, dimension (N-1) !> The (n-1) sub-diagonal or super-diagonal elements of A. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 99 of file dlanst.f.
real function SLANST (character norm, integer n, real, dimension( * ) d, real, dimension( * ) e)¶
SLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix.
Purpose:
!> !> SLANST returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> real symmetric tridiagonal matrix A. !>
Returns
!> !> SLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. !>
Parameters
!> NORM is CHARACTER*1 !> Specifies the value to be returned in SLANST as described !> above. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. When N = 0, SLANST is !> set to zero. !>
D
!> D is REAL array, dimension (N) !> The diagonal elements of A. !>
E
!> E is REAL array, dimension (N-1) !> The (n-1) sub-diagonal or super-diagonal elements of A. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 99 of file slanst.f.
double precision function ZLANHT (character norm, integer n, double precision, dimension( * ) d, complex*16, dimension( * ) e)¶
ZLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian tridiagonal matrix.
Purpose:
!> !> ZLANHT returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> complex Hermitian tridiagonal matrix A. !>
Returns
!> !> ZLANHT = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. !>
Parameters
!> NORM is CHARACTER*1 !> Specifies the value to be returned in ZLANHT as described !> above. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. When N = 0, ZLANHT is !> set to zero. !>
D
!> D is DOUBLE PRECISION array, dimension (N) !> The diagonal elements of A. !>
E
!> E is COMPLEX*16 array, dimension (N-1) !> The (n-1) sub-diagonal or super-diagonal elements of A. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 100 of file zlanht.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
| Version 3.12.0 | LAPACK |