table of contents
| lanhs(3) | Library Functions Manual | lanhs(3) |
NAME¶
lanhs - lanhs: Hessenberg
SYNOPSIS¶
Functions¶
real function CLANHS (norm, n, a, lda, work)
CLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm,
or the largest absolute value of any element of an upper Hessenberg matrix.
double precision function DLANHS (norm, n, a, lda, work)
DLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm,
or the largest absolute value of any element of an upper Hessenberg matrix.
real function SLANHS (norm, n, a, lda, work)
SLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm,
or the largest absolute value of any element of an upper Hessenberg matrix.
double precision function ZLANHS (norm, n, a, lda, work)
ZLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm,
or the largest absolute value of any element of an upper Hessenberg matrix.
Detailed Description¶
Function Documentation¶
real function CLANHS (character norm, integer n, complex, dimension( lda, * ) a, integer lda, real, dimension( * ) work)¶
CLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.
Purpose:
!> !> CLANHS returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> Hessenberg matrix A. !>
Returns
!> !> CLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. !>
Parameters
!> NORM is CHARACTER*1 !> Specifies the value to be returned in CLANHS as described !> above. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. When N = 0, CLANHS is !> set to zero. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> The n by n upper Hessenberg matrix A; the part of A below the !> first sub-diagonal is not referenced. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(N,1). !>
WORK
!> WORK is REAL array, dimension (MAX(1,LWORK)), !> where LWORK >= N when NORM = 'I'; otherwise, WORK is not !> referenced. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 108 of file clanhs.f.
double precision function DLANHS (character norm, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) work)¶
DLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.
Purpose:
!> !> DLANHS returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> Hessenberg matrix A. !>
Returns
!> !> DLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. !>
Parameters
!> NORM is CHARACTER*1 !> Specifies the value to be returned in DLANHS as described !> above. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. When N = 0, DLANHS is !> set to zero. !>
A
!> A is DOUBLE PRECISION array, dimension (LDA,N) !> The n by n upper Hessenberg matrix A; the part of A below the !> first sub-diagonal is not referenced. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(N,1). !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), !> where LWORK >= N when NORM = 'I'; otherwise, WORK is not !> referenced. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 107 of file dlanhs.f.
real function SLANHS (character norm, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) work)¶
SLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.
Purpose:
!> !> SLANHS returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> Hessenberg matrix A. !>
Returns
!> !> SLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. !>
Parameters
!> NORM is CHARACTER*1 !> Specifies the value to be returned in SLANHS as described !> above. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. When N = 0, SLANHS is !> set to zero. !>
A
!> A is REAL array, dimension (LDA,N) !> The n by n upper Hessenberg matrix A; the part of A below the !> first sub-diagonal is not referenced. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(N,1). !>
WORK
!> WORK is REAL array, dimension (MAX(1,LWORK)), !> where LWORK >= N when NORM = 'I'; otherwise, WORK is not !> referenced. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 107 of file slanhs.f.
double precision function ZLANHS (character norm, integer n, complex*16, dimension( lda, * ) a, integer lda, double precision, dimension( * ) work)¶
ZLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.
Purpose:
!> !> ZLANHS returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> Hessenberg matrix A. !>
Returns
!> !> ZLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. !>
Parameters
!> NORM is CHARACTER*1 !> Specifies the value to be returned in ZLANHS as described !> above. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. When N = 0, ZLANHS is !> set to zero. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> The n by n upper Hessenberg matrix A; the part of A below the !> first sub-diagonal is not referenced. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(N,1). !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), !> where LWORK >= N when NORM = 'I'; otherwise, WORK is not !> referenced. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 108 of file zlanhs.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
| Version 3.12.0 | LAPACK |