table of contents
laed5(3) | Library Functions Manual | laed5(3) |
NAME¶
laed5 - laed5: D&C step: secular equation, 2x2
SYNOPSIS¶
Functions¶
subroutine DLAED5 (i, d, z, delta, rho, dlam)
DLAED5 used by DSTEDC. Solves the 2-by-2 secular equation. subroutine
SLAED5 (i, d, z, delta, rho, dlam)
SLAED5 used by SSTEDC. Solves the 2-by-2 secular equation.
Detailed Description¶
Function Documentation¶
subroutine DLAED5 (integer i, double precision, dimension( 2 ) d, double precision, dimension( 2 ) z, double precision, dimension( 2 ) delta, double precision rho, double precision dlam)¶
DLAED5 used by DSTEDC. Solves the 2-by-2 secular equation.
Purpose:
!> !> This subroutine computes the I-th eigenvalue of a symmetric rank-one !> modification of a 2-by-2 diagonal matrix !> !> diag( D ) + RHO * Z * transpose(Z) . !> !> The diagonal elements in the array D are assumed to satisfy !> !> D(i) < D(j) for i < j . !> !> We also assume RHO > 0 and that the Euclidean norm of the vector !> Z is one. !>
Parameters
!> I is INTEGER !> The index of the eigenvalue to be computed. I = 1 or I = 2. !>
D
!> D is DOUBLE PRECISION array, dimension (2) !> The original eigenvalues. We assume D(1) < D(2). !>
Z
!> Z is DOUBLE PRECISION array, dimension (2) !> The components of the updating vector. !>
DELTA
!> DELTA is DOUBLE PRECISION array, dimension (2) !> The vector DELTA contains the information necessary !> to construct the eigenvectors. !>
RHO
!> RHO is DOUBLE PRECISION !> The scalar in the symmetric updating formula. !>
DLAM
!> DLAM is DOUBLE PRECISION !> The computed lambda_I, the I-th updated eigenvalue. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Definition at line 107 of file dlaed5.f.
subroutine SLAED5 (integer i, real, dimension( 2 ) d, real, dimension( 2 ) z, real, dimension( 2 ) delta, real rho, real dlam)¶
SLAED5 used by SSTEDC. Solves the 2-by-2 secular equation.
Purpose:
!> !> This subroutine computes the I-th eigenvalue of a symmetric rank-one !> modification of a 2-by-2 diagonal matrix !> !> diag( D ) + RHO * Z * transpose(Z) . !> !> The diagonal elements in the array D are assumed to satisfy !> !> D(i) < D(j) for i < j . !> !> We also assume RHO > 0 and that the Euclidean norm of the vector !> Z is one. !>
Parameters
!> I is INTEGER !> The index of the eigenvalue to be computed. I = 1 or I = 2. !>
D
!> D is REAL array, dimension (2) !> The original eigenvalues. We assume D(1) < D(2). !>
Z
!> Z is REAL array, dimension (2) !> The components of the updating vector. !>
DELTA
!> DELTA is REAL array, dimension (2) !> The vector DELTA contains the information necessary !> to construct the eigenvectors. !>
RHO
!> RHO is REAL !> The scalar in the symmetric updating formula. !>
DLAM
!> DLAM is REAL !> The computed lambda_I, the I-th updated eigenvalue. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Definition at line 107 of file slaed5.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |