table of contents
la_porpvgrw(3) | Library Functions Manual | la_porpvgrw(3) |
NAME¶
la_porpvgrw - la_porpvgrw: reciprocal pivot growth
SYNOPSIS¶
Functions¶
real function CLA_PORPVGRW (uplo, ncols, a, lda, af, ldaf,
work)
CLA_PORPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.
double precision function DLA_PORPVGRW (uplo, ncols, a, lda, af,
ldaf, work)
DLA_PORPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix. real
function SLA_PORPVGRW (uplo, ncols, a, lda, af, ldaf, work)
SLA_PORPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.
double precision function ZLA_PORPVGRW (uplo, ncols, a, lda, af,
ldaf, work)
ZLA_PORPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.
Detailed Description¶
Function Documentation¶
real function CLA_PORPVGRW (character*1 uplo, integer ncols, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf, real, dimension( * ) work)¶
CLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.
Purpose:
!> !> !> CLA_PORPVGRW computes the reciprocal pivot growth factor !> norm(A)/norm(U). The norm is used. If this is !> much less than 1, the stability of the LU factorization of the !> (equilibrated) matrix A could be poor. This also means that the !> solution X, estimated condition numbers, and error bounds could be !> unreliable. !>
Parameters
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
NCOLS
!> NCOLS is INTEGER !> The number of columns of the matrix A. NCOLS >= 0. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> On entry, the N-by-N matrix A. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
AF
!> AF is COMPLEX array, dimension (LDAF,N) !> The triangular factor U or L from the Cholesky factorization !> A = U**T*U or A = L*L**T, as computed by CPOTRF. !>
LDAF
!> LDAF is INTEGER !> The leading dimension of the array AF. LDAF >= max(1,N). !>
WORK
!> WORK is REAL array, dimension (2*N) !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 104 of file cla_porpvgrw.f.
double precision function DLA_PORPVGRW (character*1 uplo, integer ncols, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldaf, * ) af, integer ldaf, double precision, dimension( * ) work)¶
DLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.
Purpose:
!> !> !> DLA_PORPVGRW computes the reciprocal pivot growth factor !> norm(A)/norm(U). The norm is used. If this is !> much less than 1, the stability of the LU factorization of the !> (equilibrated) matrix A could be poor. This also means that the !> solution X, estimated condition numbers, and error bounds could be !> unreliable. !>
Parameters
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
NCOLS
!> NCOLS is INTEGER !> The number of columns of the matrix A. NCOLS >= 0. !>
A
!> A is DOUBLE PRECISION array, dimension (LDA,N) !> On entry, the N-by-N matrix A. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
AF
!> AF is DOUBLE PRECISION array, dimension (LDAF,N) !> The triangular factor U or L from the Cholesky factorization !> A = U**T*U or A = L*L**T, as computed by DPOTRF. !>
LDAF
!> LDAF is INTEGER !> The leading dimension of the array AF. LDAF >= max(1,N). !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (2*N) !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 104 of file dla_porpvgrw.f.
real function SLA_PORPVGRW (character*1 uplo, integer ncols, real, dimension( lda, * ) a, integer lda, real, dimension( ldaf, * ) af, integer ldaf, real, dimension( * ) work)¶
SLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.
Purpose:
!> !> !> SLA_PORPVGRW computes the reciprocal pivot growth factor !> norm(A)/norm(U). The norm is used. If this is !> much less than 1, the stability of the LU factorization of the !> (equilibrated) matrix A could be poor. This also means that the !> solution X, estimated condition numbers, and error bounds could be !> unreliable. !>
Parameters
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
NCOLS
!> NCOLS is INTEGER !> The number of columns of the matrix A. NCOLS >= 0. !>
A
!> A is REAL array, dimension (LDA,N) !> On entry, the N-by-N matrix A. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
AF
!> AF is REAL array, dimension (LDAF,N) !> The triangular factor U or L from the Cholesky factorization !> A = U**T*U or A = L*L**T, as computed by SPOTRF. !>
LDAF
!> LDAF is INTEGER !> The leading dimension of the array AF. LDAF >= max(1,N). !>
WORK
!> WORK is REAL array, dimension (2*N) !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 103 of file sla_porpvgrw.f.
double precision function ZLA_PORPVGRW (character*1 uplo, integer ncols, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf, double precision, dimension( * ) work)¶
ZLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.
Purpose:
!> !> !> ZLA_PORPVGRW computes the reciprocal pivot growth factor !> norm(A)/norm(U). The norm is used. If this is !> much less than 1, the stability of the LU factorization of the !> (equilibrated) matrix A could be poor. This also means that the !> solution X, estimated condition numbers, and error bounds could be !> unreliable. !>
Parameters
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
NCOLS
!> NCOLS is INTEGER !> The number of columns of the matrix A. NCOLS >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the N-by-N matrix A. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
AF
!> AF is COMPLEX*16 array, dimension (LDAF,N) !> The triangular factor U or L from the Cholesky factorization !> A = U**T*U or A = L*L**T, as computed by ZPOTRF. !>
LDAF
!> LDAF is INTEGER !> The leading dimension of the array AF. LDAF >= max(1,N). !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (2*N) !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 105 of file zla_porpvgrw.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |