table of contents
la_herpvgrw(3) | Library Functions Manual | la_herpvgrw(3) |
NAME¶
la_herpvgrw - la_herpvgrw: reciprocal pivot growth
SYNOPSIS¶
Functions¶
real function CLA_HERPVGRW (uplo, n, info, a, lda, af,
ldaf, ipiv, work)
CLA_HERPVGRW real function CLA_SYRPVGRW (uplo, n, info, a, lda,
af, ldaf, ipiv, work)
CLA_SYRPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U) for a symmetric indefinite matrix. double precision function
DLA_SYRPVGRW (uplo, n, info, a, lda, af, ldaf, ipiv, work)
DLA_SYRPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U) for a symmetric indefinite matrix. real function
SLA_SYRPVGRW (uplo, n, info, a, lda, af, ldaf, ipiv, work)
SLA_SYRPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U) for a symmetric indefinite matrix. double precision function
ZLA_HERPVGRW (uplo, n, info, a, lda, af, ldaf, ipiv, work)
ZLA_HERPVGRW double precision function ZLA_SYRPVGRW (uplo, n,
info, a, lda, af, ldaf, ipiv, work)
ZLA_SYRPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U) for a symmetric indefinite matrix.
Detailed Description¶
Function Documentation¶
real function CLA_HERPVGRW (character*1 uplo, integer n, integer info, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, real, dimension( * ) work)¶
CLA_HERPVGRW
Purpose:
!> !> !> CLA_HERPVGRW computes the reciprocal pivot growth factor !> norm(A)/norm(U). The norm is used. If this is !> much less than 1, the stability of the LU factorization of the !> (equilibrated) matrix A could be poor. This also means that the !> solution X, estimated condition numbers, and error bounds could be !> unreliable. !>
Parameters
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The number of linear equations, i.e., the order of the !> matrix A. N >= 0. !>
INFO
!> INFO is INTEGER !> The value of INFO returned from SSYTRF, .i.e., the pivot in !> column INFO is exactly 0. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> On entry, the N-by-N matrix A. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
AF
!> AF is COMPLEX array, dimension (LDAF,N) !> The block diagonal matrix D and the multipliers used to !> obtain the factor U or L as computed by CHETRF. !>
LDAF
!> LDAF is INTEGER !> The leading dimension of the array AF. LDAF >= max(1,N). !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by CHETRF. !>
WORK
!> WORK is REAL array, dimension (2*N) !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 121 of file cla_herpvgrw.f.
real function CLA_SYRPVGRW (character*1 uplo, integer n, integer info, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, real, dimension( * ) work)¶
CLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix.
Purpose:
!> !> !> CLA_SYRPVGRW computes the reciprocal pivot growth factor !> norm(A)/norm(U). The norm is used. If this is !> much less than 1, the stability of the LU factorization of the !> (equilibrated) matrix A could be poor. This also means that the !> solution X, estimated condition numbers, and error bounds could be !> unreliable. !>
Parameters
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The number of linear equations, i.e., the order of the !> matrix A. N >= 0. !>
INFO
!> INFO is INTEGER !> The value of INFO returned from CSYTRF, .i.e., the pivot in !> column INFO is exactly 0. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> On entry, the N-by-N matrix A. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
AF
!> AF is COMPLEX array, dimension (LDAF,N) !> The block diagonal matrix D and the multipliers used to !> obtain the factor U or L as computed by CSYTRF. !>
LDAF
!> LDAF is INTEGER !> The leading dimension of the array AF. LDAF >= max(1,N). !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by CSYTRF. !>
WORK
!> WORK is REAL array, dimension (2*N) !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 121 of file cla_syrpvgrw.f.
double precision function DLA_SYRPVGRW (character*1 uplo, integer n, integer info, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, double precision, dimension( * ) work)¶
DLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix.
Purpose:
!> !> !> DLA_SYRPVGRW computes the reciprocal pivot growth factor !> norm(A)/norm(U). The norm is used. If this is !> much less than 1, the stability of the LU factorization of the !> (equilibrated) matrix A could be poor. This also means that the !> solution X, estimated condition numbers, and error bounds could be !> unreliable. !>
Parameters
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The number of linear equations, i.e., the order of the !> matrix A. N >= 0. !>
INFO
!> INFO is INTEGER !> The value of INFO returned from DSYTRF, .i.e., the pivot in !> column INFO is exactly 0. !>
A
!> A is DOUBLE PRECISION array, dimension (LDA,N) !> On entry, the N-by-N matrix A. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
AF
!> AF is DOUBLE PRECISION array, dimension (LDAF,N) !> The block diagonal matrix D and the multipliers used to !> obtain the factor U or L as computed by DSYTRF. !>
LDAF
!> LDAF is INTEGER !> The leading dimension of the array AF. LDAF >= max(1,N). !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by DSYTRF. !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (2*N) !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 120 of file dla_syrpvgrw.f.
real function SLA_SYRPVGRW (character*1 uplo, integer n, integer info, real, dimension( lda, * ) a, integer lda, real, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, real, dimension( * ) work)¶
SLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix.
Purpose:
!> !> !> SLA_SYRPVGRW computes the reciprocal pivot growth factor !> norm(A)/norm(U). The norm is used. If this is !> much less than 1, the stability of the LU factorization of the !> (equilibrated) matrix A could be poor. This also means that the !> solution X, estimated condition numbers, and error bounds could be !> unreliable. !>
Parameters
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The number of linear equations, i.e., the order of the !> matrix A. N >= 0. !>
INFO
!> INFO is INTEGER !> The value of INFO returned from SSYTRF, .i.e., the pivot in !> column INFO is exactly 0. !>
A
!> A is REAL array, dimension (LDA,N) !> On entry, the N-by-N matrix A. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
AF
!> AF is REAL array, dimension (LDAF,N) !> The block diagonal matrix D and the multipliers used to !> obtain the factor U or L as computed by SSYTRF. !>
LDAF
!> LDAF is INTEGER !> The leading dimension of the array AF. LDAF >= max(1,N). !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by SSYTRF. !>
WORK
!> WORK is REAL array, dimension (2*N) !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 120 of file sla_syrpvgrw.f.
double precision function ZLA_HERPVGRW (character*1 uplo, integer n, integer info, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, double precision, dimension( * ) work)¶
ZLA_HERPVGRW
Purpose:
!> !> !> ZLA_HERPVGRW computes the reciprocal pivot growth factor !> norm(A)/norm(U). The norm is used. If this is !> much less than 1, the stability of the LU factorization of the !> (equilibrated) matrix A could be poor. This also means that the !> solution X, estimated condition numbers, and error bounds could be !> unreliable. !>
Parameters
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The number of linear equations, i.e., the order of the !> matrix A. N >= 0. !>
INFO
!> INFO is INTEGER !> The value of INFO returned from ZHETRF, .i.e., the pivot in !> column INFO is exactly 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the N-by-N matrix A. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
AF
!> AF is COMPLEX*16 array, dimension (LDAF,N) !> The block diagonal matrix D and the multipliers used to !> obtain the factor U or L as computed by ZHETRF. !>
LDAF
!> LDAF is INTEGER !> The leading dimension of the array AF. LDAF >= max(1,N). !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by ZHETRF. !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (2*N) !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 121 of file zla_herpvgrw.f.
double precision function ZLA_SYRPVGRW (character*1 uplo, integer n, integer info, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, double precision, dimension( * ) work)¶
ZLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix.
Purpose:
!> !> !> ZLA_SYRPVGRW computes the reciprocal pivot growth factor !> norm(A)/norm(U). The norm is used. If this is !> much less than 1, the stability of the LU factorization of the !> (equilibrated) matrix A could be poor. This also means that the !> solution X, estimated condition numbers, and error bounds could be !> unreliable. !>
Parameters
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The number of linear equations, i.e., the order of the !> matrix A. N >= 0. !>
INFO
!> INFO is INTEGER !> The value of INFO returned from ZSYTRF, .i.e., the pivot in !> column INFO is exactly 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the N-by-N matrix A. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
AF
!> AF is COMPLEX*16 array, dimension (LDAF,N) !> The block diagonal matrix D and the multipliers used to !> obtain the factor U or L as computed by ZSYTRF. !>
LDAF
!> LDAF is INTEGER !> The leading dimension of the array AF. LDAF >= max(1,N). !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by ZSYTRF. !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (2*N) !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 121 of file zla_syrpvgrw.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |