table of contents
la_gerpvgrw(3) | Library Functions Manual | la_gerpvgrw(3) |
NAME¶
la_gerpvgrw - la_gerpvgrw: reciprocal pivot growth
SYNOPSIS¶
Functions¶
real function CLA_GERPVGRW (n, ncols, a, lda, af, ldaf)
CLA_GERPVGRW multiplies a square real matrix by a complex matrix.
double precision function DLA_GERPVGRW (n, ncols, a, lda, af, ldaf)
DLA_GERPVGRW real function SLA_GERPVGRW (n, ncols, a, lda, af,
ldaf)
SLA_GERPVGRW double precision function ZLA_GERPVGRW (n, ncols,
a, lda, af, ldaf)
ZLA_GERPVGRW multiplies a square real matrix by a complex matrix.
Detailed Description¶
Function Documentation¶
real function CLA_GERPVGRW (integer n, integer ncols, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf)¶
CLA_GERPVGRW multiplies a square real matrix by a complex matrix.
Purpose:
!> !> !> CLA_GERPVGRW computes the reciprocal pivot growth factor !> norm(A)/norm(U). The norm is used. If this is !> much less than 1, the stability of the LU factorization of the !> (equilibrated) matrix A could be poor. This also means that the !> solution X, estimated condition numbers, and error bounds could be !> unreliable. !>
Parameters
!> N is INTEGER !> The number of linear equations, i.e., the order of the !> matrix A. N >= 0. !>
NCOLS
!> NCOLS is INTEGER !> The number of columns of the matrix A. NCOLS >= 0. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> On entry, the N-by-N matrix A. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
AF
!> AF is COMPLEX array, dimension (LDAF,N) !> The factors L and U from the factorization !> A = P*L*U as computed by CGETRF. !>
LDAF
!> LDAF is INTEGER !> The leading dimension of the array AF. LDAF >= max(1,N). !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 97 of file cla_gerpvgrw.f.
double precision function DLA_GERPVGRW (integer n, integer ncols, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldaf, * ) af, integer ldaf)¶
DLA_GERPVGRW
Purpose:
!> !> !> DLA_GERPVGRW computes the reciprocal pivot growth factor !> norm(A)/norm(U). The norm is used. If this is !> much less than 1, the stability of the LU factorization of the !> (equilibrated) matrix A could be poor. This also means that the !> solution X, estimated condition numbers, and error bounds could be !> unreliable. !>
Parameters
!> N is INTEGER !> The number of linear equations, i.e., the order of the !> matrix A. N >= 0. !>
NCOLS
!> NCOLS is INTEGER !> The number of columns of the matrix A. NCOLS >= 0. !>
A
!> A is DOUBLE PRECISION array, dimension (LDA,N) !> On entry, the N-by-N matrix A. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
AF
!> AF is DOUBLE PRECISION array, dimension (LDAF,N) !> The factors L and U from the factorization !> A = P*L*U as computed by DGETRF. !>
LDAF
!> LDAF is INTEGER !> The leading dimension of the array AF. LDAF >= max(1,N). !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 98 of file dla_gerpvgrw.f.
real function SLA_GERPVGRW (integer n, integer ncols, real, dimension( lda, * ) a, integer lda, real, dimension( ldaf, * ) af, integer ldaf)¶
SLA_GERPVGRW
Purpose:
!> !> SLA_GERPVGRW computes the reciprocal pivot growth factor !> norm(A)/norm(U). The norm is used. If this is !> much less than 1, the stability of the LU factorization of the !> (equilibrated) matrix A could be poor. This also means that the !> solution X, estimated condition numbers, and error bounds could be !> unreliable. !>
Parameters
!> N is INTEGER !> The number of linear equations, i.e., the order of the !> matrix A. N >= 0. !>
NCOLS
!> NCOLS is INTEGER !> The number of columns of the matrix A. NCOLS >= 0. !>
A
!> A is REAL array, dimension (LDA,N) !> On entry, the N-by-N matrix A. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
AF
!> AF is REAL array, dimension (LDAF,N) !> The factors L and U from the factorization !> A = P*L*U as computed by SGETRF. !>
LDAF
!> LDAF is INTEGER !> The leading dimension of the array AF. LDAF >= max(1,N). !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 96 of file sla_gerpvgrw.f.
double precision function ZLA_GERPVGRW (integer n, integer ncols, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf)¶
ZLA_GERPVGRW multiplies a square real matrix by a complex matrix.
Purpose:
!> !> !> ZLA_GERPVGRW computes the reciprocal pivot growth factor !> norm(A)/norm(U). The norm is used. If this is !> much less than 1, the stability of the LU factorization of the !> (equilibrated) matrix A could be poor. This also means that the !> solution X, estimated condition numbers, and error bounds could be !> unreliable. !>
Parameters
!> N is INTEGER !> The number of linear equations, i.e., the order of the !> matrix A. N >= 0. !>
NCOLS
!> NCOLS is INTEGER !> The number of columns of the matrix A. NCOLS >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the N-by-N matrix A. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
AF
!> AF is COMPLEX*16 array, dimension (LDAF,N) !> The factors L and U from the factorization !> A = P*L*U as computed by ZGETRF. !>
LDAF
!> LDAF is INTEGER !> The leading dimension of the array AF. LDAF >= max(1,N). !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 98 of file zla_gerpvgrw.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |