Scroll to navigation

la_gerpvgrw(3) Library Functions Manual la_gerpvgrw(3)

NAME

la_gerpvgrw - la_gerpvgrw: reciprocal pivot growth

SYNOPSIS

Functions


real function CLA_GERPVGRW (n, ncols, a, lda, af, ldaf)
CLA_GERPVGRW multiplies a square real matrix by a complex matrix. double precision function DLA_GERPVGRW (n, ncols, a, lda, af, ldaf)
DLA_GERPVGRW real function SLA_GERPVGRW (n, ncols, a, lda, af, ldaf)
SLA_GERPVGRW double precision function ZLA_GERPVGRW (n, ncols, a, lda, af, ldaf)
ZLA_GERPVGRW multiplies a square real matrix by a complex matrix.

Detailed Description

Function Documentation

real function CLA_GERPVGRW (integer n, integer ncols, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf)

CLA_GERPVGRW multiplies a square real matrix by a complex matrix.

Purpose:

!>
!>
!> CLA_GERPVGRW computes the reciprocal pivot growth factor
!> norm(A)/norm(U). The  norm is used. If this is
!> much less than 1, the stability of the LU factorization of the
!> (equilibrated) matrix A could be poor. This also means that the
!> solution X, estimated condition numbers, and error bounds could be
!> unreliable.
!> 

Parameters

N

!>          N is INTEGER
!>     The number of linear equations, i.e., the order of the
!>     matrix A.  N >= 0.
!> 

NCOLS

!>          NCOLS is INTEGER
!>     The number of columns of the matrix A. NCOLS >= 0.
!> 

A

!>          A is COMPLEX array, dimension (LDA,N)
!>     On entry, the N-by-N matrix A.
!> 

LDA

!>          LDA is INTEGER
!>     The leading dimension of the array A.  LDA >= max(1,N).
!> 

AF

!>          AF is COMPLEX array, dimension (LDAF,N)
!>     The factors L and U from the factorization
!>     A = P*L*U as computed by CGETRF.
!> 

LDAF

!>          LDAF is INTEGER
!>     The leading dimension of the array AF.  LDAF >= max(1,N).
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 97 of file cla_gerpvgrw.f.

double precision function DLA_GERPVGRW (integer n, integer ncols, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldaf, * ) af, integer ldaf)

DLA_GERPVGRW

Purpose:

!>
!>
!> DLA_GERPVGRW computes the reciprocal pivot growth factor
!> norm(A)/norm(U). The  norm is used. If this is
!> much less than 1, the stability of the LU factorization of the
!> (equilibrated) matrix A could be poor. This also means that the
!> solution X, estimated condition numbers, and error bounds could be
!> unreliable.
!> 

Parameters

N

!>          N is INTEGER
!>     The number of linear equations, i.e., the order of the
!>     matrix A.  N >= 0.
!> 

NCOLS

!>          NCOLS is INTEGER
!>     The number of columns of the matrix A. NCOLS >= 0.
!> 

A

!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>     On entry, the N-by-N matrix A.
!> 

LDA

!>          LDA is INTEGER
!>     The leading dimension of the array A.  LDA >= max(1,N).
!> 

AF

!>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
!>     The factors L and U from the factorization
!>     A = P*L*U as computed by DGETRF.
!> 

LDAF

!>          LDAF is INTEGER
!>     The leading dimension of the array AF.  LDAF >= max(1,N).
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 98 of file dla_gerpvgrw.f.

real function SLA_GERPVGRW (integer n, integer ncols, real, dimension( lda, * ) a, integer lda, real, dimension( ldaf, * ) af, integer ldaf)

SLA_GERPVGRW

Purpose:

!>
!> SLA_GERPVGRW computes the reciprocal pivot growth factor
!> norm(A)/norm(U). The  norm is used. If this is
!> much less than 1, the stability of the LU factorization of the
!> (equilibrated) matrix A could be poor. This also means that the
!> solution X, estimated condition numbers, and error bounds could be
!> unreliable.
!> 

Parameters

N

!>          N is INTEGER
!>     The number of linear equations, i.e., the order of the
!>     matrix A.  N >= 0.
!> 

NCOLS

!>          NCOLS is INTEGER
!>     The number of columns of the matrix A. NCOLS >= 0.
!> 

A

!>          A is REAL array, dimension (LDA,N)
!>     On entry, the N-by-N matrix A.
!> 

LDA

!>          LDA is INTEGER
!>     The leading dimension of the array A.  LDA >= max(1,N).
!> 

AF

!>          AF is REAL array, dimension (LDAF,N)
!>     The factors L and U from the factorization
!>     A = P*L*U as computed by SGETRF.
!> 

LDAF

!>          LDAF is INTEGER
!>     The leading dimension of the array AF.  LDAF >= max(1,N).
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 96 of file sla_gerpvgrw.f.

double precision function ZLA_GERPVGRW (integer n, integer ncols, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf)

ZLA_GERPVGRW multiplies a square real matrix by a complex matrix.

Purpose:

!>
!>
!> ZLA_GERPVGRW computes the reciprocal pivot growth factor
!> norm(A)/norm(U). The  norm is used. If this is
!> much less than 1, the stability of the LU factorization of the
!> (equilibrated) matrix A could be poor. This also means that the
!> solution X, estimated condition numbers, and error bounds could be
!> unreliable.
!> 

Parameters

N

!>          N is INTEGER
!>     The number of linear equations, i.e., the order of the
!>     matrix A.  N >= 0.
!> 

NCOLS

!>          NCOLS is INTEGER
!>     The number of columns of the matrix A. NCOLS >= 0.
!> 

A

!>          A is COMPLEX*16 array, dimension (LDA,N)
!>     On entry, the N-by-N matrix A.
!> 

LDA

!>          LDA is INTEGER
!>     The leading dimension of the array A.  LDA >= max(1,N).
!> 

AF

!>          AF is COMPLEX*16 array, dimension (LDAF,N)
!>     The factors L and U from the factorization
!>     A = P*L*U as computed by ZGETRF.
!> 

LDAF

!>          LDAF is INTEGER
!>     The leading dimension of the array AF.  LDAF >= max(1,N).
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 98 of file zla_gerpvgrw.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK