table of contents
| hpevd(3) | Library Functions Manual | hpevd(3) |
NAME¶
hpevd - {hp,sp}evd: eig, divide and conquer
SYNOPSIS¶
Functions¶
subroutine CHPEVD (jobz, uplo, n, ap, w, z, ldz, work,
lwork, rwork, lrwork, iwork, liwork, info)
CHPEVD computes the eigenvalues and, optionally, the left and/or right
eigenvectors for OTHER matrices subroutine DSPEVD (jobz, uplo, n,
ap, w, z, ldz, work, lwork, iwork, liwork, info)
DSPEVD computes the eigenvalues and, optionally, the left and/or right
eigenvectors for OTHER matrices subroutine SSPEVD (jobz, uplo, n,
ap, w, z, ldz, work, lwork, iwork, liwork, info)
SSPEVD computes the eigenvalues and, optionally, the left and/or right
eigenvectors for OTHER matrices subroutine ZHPEVD (jobz, uplo, n,
ap, w, z, ldz, work, lwork, rwork, lrwork, iwork, liwork, info)
ZHPEVD computes the eigenvalues and, optionally, the left and/or right
eigenvectors for OTHER matrices
Detailed Description¶
Function Documentation¶
subroutine CHPEVD (character jobz, character uplo, integer n, complex, dimension( * ) ap, real, dimension( * ) w, complex, dimension( ldz, * ) z, integer ldz, complex, dimension( * ) work, integer lwork, real, dimension( * ) rwork, integer lrwork, integer, dimension( * ) iwork, integer liwork, integer info)¶
CHPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Purpose:
!> !> CHPEVD computes all the eigenvalues and, optionally, eigenvectors of !> a complex Hermitian matrix A in packed storage. If eigenvectors are !> desired, it uses a divide and conquer algorithm. !> !>
Parameters
!> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
AP
!> AP is COMPLEX array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the Hermitian matrix !> A, packed columnwise in a linear array. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. !> !> On exit, AP is overwritten by values generated during the !> reduction to tridiagonal form. If UPLO = 'U', the diagonal !> and first superdiagonal of the tridiagonal matrix T overwrite !> the corresponding elements of A, and if UPLO = 'L', the !> diagonal and first subdiagonal of T overwrite the !> corresponding elements of A. !>
W
!> W is REAL array, dimension (N) !> If INFO = 0, the eigenvalues in ascending order. !>
Z
!> Z is COMPLEX array, dimension (LDZ, N) !> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal !> eigenvectors of the matrix A, with the i-th column of Z !> holding the eigenvector associated with W(i). !> If JOBZ = 'N', then Z is not referenced. !>
LDZ
!> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N). !>
WORK
!> WORK is COMPLEX array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the required LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of array WORK. !> If N <= 1, LWORK must be at least 1. !> If JOBZ = 'N' and N > 1, LWORK must be at least N. !> If JOBZ = 'V' and N > 1, LWORK must be at least 2*N. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the required sizes of the WORK, RWORK and !> IWORK arrays, returns these values as the first entries of !> the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA. !>
RWORK
!> RWORK is REAL array, dimension (MAX(1,LRWORK)) !> On exit, if INFO = 0, RWORK(1) returns the required LRWORK. !>
LRWORK
!> LRWORK is INTEGER !> The dimension of array RWORK. !> If N <= 1, LRWORK must be at least 1. !> If JOBZ = 'N' and N > 1, LRWORK must be at least N. !> If JOBZ = 'V' and N > 1, LRWORK must be at least !> 1 + 5*N + 2*N**2. !> !> If LRWORK = -1, then a workspace query is assumed; the !> routine only calculates the required sizes of the WORK, RWORK !> and IWORK arrays, returns these values as the first entries !> of the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA. !>
IWORK
!> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) !> On exit, if INFO = 0, IWORK(1) returns the required LIWORK. !>
LIWORK
!> LIWORK is INTEGER !> The dimension of array IWORK. !> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1. !> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. !> !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the required sizes of the WORK, RWORK !> and IWORK arrays, returns these values as the first entries !> of the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: if INFO = i, the algorithm failed to converge; i !> off-diagonal elements of an intermediate tridiagonal !> form did not converge to zero. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 192 of file chpevd.f.
subroutine DSPEVD (character jobz, character uplo, integer n, double precision, dimension( * ) ap, double precision, dimension( * ) w, double precision, dimension( ldz, * ) z, integer ldz, double precision, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info)¶
DSPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Purpose:
!> !> DSPEVD computes all the eigenvalues and, optionally, eigenvectors !> of a real symmetric matrix A in packed storage. If eigenvectors are !> desired, it uses a divide and conquer algorithm. !> !>
Parameters
!> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
AP
!> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the symmetric matrix !> A, packed columnwise in a linear array. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. !> !> On exit, AP is overwritten by values generated during the !> reduction to tridiagonal form. If UPLO = 'U', the diagonal !> and first superdiagonal of the tridiagonal matrix T overwrite !> the corresponding elements of A, and if UPLO = 'L', the !> diagonal and first subdiagonal of T overwrite the !> corresponding elements of A. !>
W
!> W is DOUBLE PRECISION array, dimension (N) !> If INFO = 0, the eigenvalues in ascending order. !>
Z
!> Z is DOUBLE PRECISION array, dimension (LDZ, N) !> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal !> eigenvectors of the matrix A, with the i-th column of Z !> holding the eigenvector associated with W(i). !> If JOBZ = 'N', then Z is not referenced. !>
LDZ
!> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N). !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the required LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. !> If N <= 1, LWORK must be at least 1. !> If JOBZ = 'N' and N > 1, LWORK must be at least 2*N. !> If JOBZ = 'V' and N > 1, LWORK must be at least !> 1 + 6*N + N**2. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the required sizes of the WORK and IWORK !> arrays, returns these values as the first entries of the WORK !> and IWORK arrays, and no error message related to LWORK or !> LIWORK is issued by XERBLA. !>
IWORK
!> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) !> On exit, if INFO = 0, IWORK(1) returns the required LIWORK. !>
LIWORK
!> LIWORK is INTEGER !> The dimension of the array IWORK. !> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1. !> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. !> !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the required sizes of the WORK and !> IWORK arrays, returns these values as the first entries of !> the WORK and IWORK arrays, and no error message related to !> LWORK or LIWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: if INFO = i, the algorithm failed to converge; i !> off-diagonal elements of an intermediate tridiagonal !> form did not converge to zero. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 170 of file dspevd.f.
subroutine SSPEVD (character jobz, character uplo, integer n, real, dimension( * ) ap, real, dimension( * ) w, real, dimension( ldz, * ) z, integer ldz, real, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info)¶
SSPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Purpose:
!> !> SSPEVD computes all the eigenvalues and, optionally, eigenvectors !> of a real symmetric matrix A in packed storage. If eigenvectors are !> desired, it uses a divide and conquer algorithm. !> !>
Parameters
!> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
AP
!> AP is REAL array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the symmetric matrix !> A, packed columnwise in a linear array. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. !> !> On exit, AP is overwritten by values generated during the !> reduction to tridiagonal form. If UPLO = 'U', the diagonal !> and first superdiagonal of the tridiagonal matrix T overwrite !> the corresponding elements of A, and if UPLO = 'L', the !> diagonal and first subdiagonal of T overwrite the !> corresponding elements of A. !>
W
!> W is REAL array, dimension (N) !> If INFO = 0, the eigenvalues in ascending order. !>
Z
!> Z is REAL array, dimension (LDZ, N) !> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal !> eigenvectors of the matrix A, with the i-th column of Z !> holding the eigenvector associated with W(i). !> If JOBZ = 'N', then Z is not referenced. !>
LDZ
!> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N). !>
WORK
!> WORK is REAL array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the required LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. !> If N <= 1, LWORK must be at least 1. !> If JOBZ = 'N' and N > 1, LWORK must be at least 2*N. !> If JOBZ = 'V' and N > 1, LWORK must be at least !> 1 + 6*N + N**2. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the required sizes of the WORK and IWORK !> arrays, returns these values as the first entries of the WORK !> and IWORK arrays, and no error message related to LWORK or !> LIWORK is issued by XERBLA. !>
IWORK
!> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) !> On exit, if INFO = 0, IWORK(1) returns the required LIWORK. !>
LIWORK
!> LIWORK is INTEGER !> The dimension of the array IWORK. !> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1. !> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. !> !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the required sizes of the WORK and !> IWORK arrays, returns these values as the first entries of !> the WORK and IWORK arrays, and no error message related to !> LWORK or LIWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: if INFO = i, the algorithm failed to converge; i !> off-diagonal elements of an intermediate tridiagonal !> form did not converge to zero. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 170 of file sspevd.f.
subroutine ZHPEVD (character jobz, character uplo, integer n, complex*16, dimension( * ) ap, double precision, dimension( * ) w, complex*16, dimension( ldz, * ) z, integer ldz, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer lrwork, integer, dimension( * ) iwork, integer liwork, integer info)¶
ZHPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Purpose:
!> !> ZHPEVD computes all the eigenvalues and, optionally, eigenvectors of !> a complex Hermitian matrix A in packed storage. If eigenvectors are !> desired, it uses a divide and conquer algorithm. !> !>
Parameters
!> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
AP
!> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the Hermitian matrix !> A, packed columnwise in a linear array. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. !> !> On exit, AP is overwritten by values generated during the !> reduction to tridiagonal form. If UPLO = 'U', the diagonal !> and first superdiagonal of the tridiagonal matrix T overwrite !> the corresponding elements of A, and if UPLO = 'L', the !> diagonal and first subdiagonal of T overwrite the !> corresponding elements of A. !>
W
!> W is DOUBLE PRECISION array, dimension (N) !> If INFO = 0, the eigenvalues in ascending order. !>
Z
!> Z is COMPLEX*16 array, dimension (LDZ, N) !> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal !> eigenvectors of the matrix A, with the i-th column of Z !> holding the eigenvector associated with W(i). !> If JOBZ = 'N', then Z is not referenced. !>
LDZ
!> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N). !>
WORK
!> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the required LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of array WORK. !> If N <= 1, LWORK must be at least 1. !> If JOBZ = 'N' and N > 1, LWORK must be at least N. !> If JOBZ = 'V' and N > 1, LWORK must be at least 2*N. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the required sizes of the WORK, RWORK and !> IWORK arrays, returns these values as the first entries of !> the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA. !>
RWORK
!> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) !> On exit, if INFO = 0, RWORK(1) returns the required LRWORK. !>
LRWORK
!> LRWORK is INTEGER !> The dimension of array RWORK. !> If N <= 1, LRWORK must be at least 1. !> If JOBZ = 'N' and N > 1, LRWORK must be at least N. !> If JOBZ = 'V' and N > 1, LRWORK must be at least !> 1 + 5*N + 2*N**2. !> !> If LRWORK = -1, then a workspace query is assumed; the !> routine only calculates the required sizes of the WORK, RWORK !> and IWORK arrays, returns these values as the first entries !> of the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA. !>
IWORK
!> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) !> On exit, if INFO = 0, IWORK(1) returns the required LIWORK. !>
LIWORK
!> LIWORK is INTEGER !> The dimension of array IWORK. !> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1. !> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. !> !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the required sizes of the WORK, RWORK !> and IWORK arrays, returns these values as the first entries !> of the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: if INFO = i, the algorithm failed to converge; i !> off-diagonal elements of an intermediate tridiagonal !> form did not converge to zero. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 192 of file zhpevd.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
| Version 3.12.0 | LAPACK |