table of contents
| hpev(3) | Library Functions Manual | hpev(3) |
NAME¶
hpev - {hp,sp}ev: eig, QR iteration
SYNOPSIS¶
Functions¶
subroutine CHPEV (jobz, uplo, n, ap, w, z, ldz, work,
rwork, info)
CHPEV computes the eigenvalues and, optionally, the left and/or right
eigenvectors for OTHER matrices subroutine DSPEV (jobz, uplo, n,
ap, w, z, ldz, work, info)
DSPEV computes the eigenvalues and, optionally, the left and/or right
eigenvectors for OTHER matrices subroutine SSPEV (jobz, uplo, n,
ap, w, z, ldz, work, info)
SSPEV computes the eigenvalues and, optionally, the left and/or right
eigenvectors for OTHER matrices subroutine ZHPEV (jobz, uplo, n,
ap, w, z, ldz, work, rwork, info)
ZHPEV computes the eigenvalues and, optionally, the left and/or right
eigenvectors for OTHER matrices
Detailed Description¶
Function Documentation¶
subroutine CHPEV (character jobz, character uplo, integer n, complex, dimension( * ) ap, real, dimension( * ) w, complex, dimension( ldz, * ) z, integer ldz, complex, dimension( * ) work, real, dimension( * ) rwork, integer info)¶
CHPEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Purpose:
!> !> CHPEV computes all the eigenvalues and, optionally, eigenvectors of a !> complex Hermitian matrix in packed storage. !>
Parameters
!> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
AP
!> AP is COMPLEX array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the Hermitian matrix !> A, packed columnwise in a linear array. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. !> !> On exit, AP is overwritten by values generated during the !> reduction to tridiagonal form. If UPLO = 'U', the diagonal !> and first superdiagonal of the tridiagonal matrix T overwrite !> the corresponding elements of A, and if UPLO = 'L', the !> diagonal and first subdiagonal of T overwrite the !> corresponding elements of A. !>
W
!> W is REAL array, dimension (N) !> If INFO = 0, the eigenvalues in ascending order. !>
Z
!> Z is COMPLEX array, dimension (LDZ, N) !> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal !> eigenvectors of the matrix A, with the i-th column of Z !> holding the eigenvector associated with W(i). !> If JOBZ = 'N', then Z is not referenced. !>
LDZ
!> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N). !>
WORK
!> WORK is COMPLEX array, dimension (max(1, 2*N-1)) !>
RWORK
!> RWORK is REAL array, dimension (max(1, 3*N-2)) !>
INFO
!> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: if INFO = i, the algorithm failed to converge; i !> off-diagonal elements of an intermediate tridiagonal !> form did not converge to zero. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 136 of file chpev.f.
subroutine DSPEV (character jobz, character uplo, integer n, double precision, dimension( * ) ap, double precision, dimension( * ) w, double precision, dimension( ldz, * ) z, integer ldz, double precision, dimension( * ) work, integer info)¶
DSPEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Purpose:
!> !> DSPEV computes all the eigenvalues and, optionally, eigenvectors of a !> real symmetric matrix A in packed storage. !>
Parameters
!> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
AP
!> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the symmetric matrix !> A, packed columnwise in a linear array. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. !> !> On exit, AP is overwritten by values generated during the !> reduction to tridiagonal form. If UPLO = 'U', the diagonal !> and first superdiagonal of the tridiagonal matrix T overwrite !> the corresponding elements of A, and if UPLO = 'L', the !> diagonal and first subdiagonal of T overwrite the !> corresponding elements of A. !>
W
!> W is DOUBLE PRECISION array, dimension (N) !> If INFO = 0, the eigenvalues in ascending order. !>
Z
!> Z is DOUBLE PRECISION array, dimension (LDZ, N) !> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal !> eigenvectors of the matrix A, with the i-th column of Z !> holding the eigenvector associated with W(i). !> If JOBZ = 'N', then Z is not referenced. !>
LDZ
!> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N). !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (3*N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: if INFO = i, the algorithm failed to converge; i !> off-diagonal elements of an intermediate tridiagonal !> form did not converge to zero. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 129 of file dspev.f.
subroutine SSPEV (character jobz, character uplo, integer n, real, dimension( * ) ap, real, dimension( * ) w, real, dimension( ldz, * ) z, integer ldz, real, dimension( * ) work, integer info)¶
SSPEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Purpose:
!> !> SSPEV computes all the eigenvalues and, optionally, eigenvectors of a !> real symmetric matrix A in packed storage. !>
Parameters
!> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
AP
!> AP is REAL array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the symmetric matrix !> A, packed columnwise in a linear array. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. !> !> On exit, AP is overwritten by values generated during the !> reduction to tridiagonal form. If UPLO = 'U', the diagonal !> and first superdiagonal of the tridiagonal matrix T overwrite !> the corresponding elements of A, and if UPLO = 'L', the !> diagonal and first subdiagonal of T overwrite the !> corresponding elements of A. !>
W
!> W is REAL array, dimension (N) !> If INFO = 0, the eigenvalues in ascending order. !>
Z
!> Z is REAL array, dimension (LDZ, N) !> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal !> eigenvectors of the matrix A, with the i-th column of Z !> holding the eigenvector associated with W(i). !> If JOBZ = 'N', then Z is not referenced. !>
LDZ
!> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N). !>
WORK
!> WORK is REAL array, dimension (3*N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: if INFO = i, the algorithm failed to converge; i !> off-diagonal elements of an intermediate tridiagonal !> form did not converge to zero. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 129 of file sspev.f.
subroutine ZHPEV (character jobz, character uplo, integer n, complex*16, dimension( * ) ap, double precision, dimension( * ) w, complex*16, dimension( ldz, * ) z, integer ldz, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info)¶
ZHPEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Purpose:
!> !> ZHPEV computes all the eigenvalues and, optionally, eigenvectors of a !> complex Hermitian matrix in packed storage. !>
Parameters
!> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
AP
!> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the Hermitian matrix !> A, packed columnwise in a linear array. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. !> !> On exit, AP is overwritten by values generated during the !> reduction to tridiagonal form. If UPLO = 'U', the diagonal !> and first superdiagonal of the tridiagonal matrix T overwrite !> the corresponding elements of A, and if UPLO = 'L', the !> diagonal and first subdiagonal of T overwrite the !> corresponding elements of A. !>
W
!> W is DOUBLE PRECISION array, dimension (N) !> If INFO = 0, the eigenvalues in ascending order. !>
Z
!> Z is COMPLEX*16 array, dimension (LDZ, N) !> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal !> eigenvectors of the matrix A, with the i-th column of Z !> holding the eigenvector associated with W(i). !> If JOBZ = 'N', then Z is not referenced. !>
LDZ
!> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N). !>
WORK
!> WORK is COMPLEX*16 array, dimension (max(1, 2*N-1)) !>
RWORK
!> RWORK is DOUBLE PRECISION array, dimension (max(1, 3*N-2)) !>
INFO
!> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: if INFO = i, the algorithm failed to converge; i !> off-diagonal elements of an intermediate tridiagonal !> form did not converge to zero. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 136 of file zhpev.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
| Version 3.12.0 | LAPACK |