table of contents
hetrs_rook(3) | Library Functions Manual | hetrs_rook(3) |
NAME¶
hetrs_rook - {he,sy}trs_rook: triangular solve using factor
SYNOPSIS¶
Functions¶
subroutine CHETRS_ROOK (uplo, n, nrhs, a, lda, ipiv, b,
ldb, info)
CHETRS_ROOK computes the solution to a system of linear equations A * X
= B for HE matrices using factorization obtained with one of the bounded
diagonal pivoting methods (max 2 interchanges) subroutine CSYTRS_ROOK
(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
CSYTRS_ROOK subroutine DSYTRS_ROOK (uplo, n, nrhs, a, lda, ipiv,
b, ldb, info)
DSYTRS_ROOK subroutine SSYTRS_ROOK (uplo, n, nrhs, a, lda, ipiv,
b, ldb, info)
SSYTRS_ROOK subroutine ZHETRS_ROOK (uplo, n, nrhs, a, lda, ipiv,
b, ldb, info)
ZHETRS_ROOK computes the solution to a system of linear equations A * X
= B for HE matrices using factorization obtained with one of the bounded
diagonal pivoting methods (max 2 interchanges) subroutine ZSYTRS_ROOK
(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
ZSYTRS_ROOK
Detailed Description¶
Function Documentation¶
subroutine CHETRS_ROOK (character uplo, integer n, integer nrhs, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex, dimension( ldb, * ) b, integer ldb, integer info)¶
CHETRS_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using factorization obtained with one of the bounded diagonal pivoting methods (max 2 interchanges)
Purpose:
!> !> CHETRS_ROOK solves a system of linear equations A*X = B with a complex !> Hermitian matrix A using the factorization A = U*D*U**H or !> A = L*D*L**H computed by CHETRF_ROOK. !>
Parameters
!> UPLO is CHARACTER*1 !> Specifies whether the details of the factorization are stored !> as an upper or lower triangular matrix. !> = 'U': Upper triangular, form is A = U*D*U**H; !> = 'L': Lower triangular, form is A = L*D*L**H. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> The block diagonal matrix D and the multipliers used to !> obtain the factor U or L as computed by CHETRF_ROOK. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by CHETRF_ROOK. !>
B
!> B is COMPLEX array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B. !> On exit, the solution matrix X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
!> !> November 2013, Igor Kozachenko, !> Computer Science Division, !> University of California, Berkeley !> !> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, !> School of Mathematics, !> University of Manchester !> !>
Definition at line 134 of file chetrs_rook.f.
subroutine CSYTRS_ROOK (character uplo, integer n, integer nrhs, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex, dimension( ldb, * ) b, integer ldb, integer info)¶
CSYTRS_ROOK
Purpose:
!> !> CSYTRS_ROOK solves a system of linear equations A*X = B with !> a complex symmetric matrix A using the factorization A = U*D*U**T or !> A = L*D*L**T computed by CSYTRF_ROOK. !>
Parameters
!> UPLO is CHARACTER*1 !> Specifies whether the details of the factorization are stored !> as an upper or lower triangular matrix. !> = 'U': Upper triangular, form is A = U*D*U**T; !> = 'L': Lower triangular, form is A = L*D*L**T. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> The block diagonal matrix D and the multipliers used to !> obtain the factor U or L as computed by CSYTRF_ROOK. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by CSYTRF_ROOK. !>
B
!> B is COMPLEX array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B. !> On exit, the solution matrix X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
!> !> December 2016, Igor Kozachenko, !> Computer Science Division, !> University of California, Berkeley !> !> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, !> School of Mathematics, !> University of Manchester !> !>
Definition at line 134 of file csytrs_rook.f.
subroutine DSYTRS_ROOK (character uplo, integer n, integer nrhs, double precision, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, double precision, dimension( ldb, * ) b, integer ldb, integer info)¶
DSYTRS_ROOK
Purpose:
!> !> DSYTRS_ROOK solves a system of linear equations A*X = B with !> a real symmetric matrix A using the factorization A = U*D*U**T or !> A = L*D*L**T computed by DSYTRF_ROOK. !>
Parameters
!> UPLO is CHARACTER*1 !> Specifies whether the details of the factorization are stored !> as an upper or lower triangular matrix. !> = 'U': Upper triangular, form is A = U*D*U**T; !> = 'L': Lower triangular, form is A = L*D*L**T. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
A
!> A is DOUBLE PRECISION array, dimension (LDA,N) !> The block diagonal matrix D and the multipliers used to !> obtain the factor U or L as computed by DSYTRF_ROOK. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by DSYTRF_ROOK. !>
B
!> B is DOUBLE PRECISION array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B. !> On exit, the solution matrix X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
!> !> April 2012, Igor Kozachenko, !> Computer Science Division, !> University of California, Berkeley !> !> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, !> School of Mathematics, !> University of Manchester !> !>
Definition at line 134 of file dsytrs_rook.f.
subroutine SSYTRS_ROOK (character uplo, integer n, integer nrhs, real, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, real, dimension( ldb, * ) b, integer ldb, integer info)¶
SSYTRS_ROOK
Purpose:
!> !> SSYTRS_ROOK solves a system of linear equations A*X = B with !> a real symmetric matrix A using the factorization A = U*D*U**T or !> A = L*D*L**T computed by SSYTRF_ROOK. !>
Parameters
!> UPLO is CHARACTER*1 !> Specifies whether the details of the factorization are stored !> as an upper or lower triangular matrix. !> = 'U': Upper triangular, form is A = U*D*U**T; !> = 'L': Lower triangular, form is A = L*D*L**T. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
A
!> A is REAL array, dimension (LDA,N) !> The block diagonal matrix D and the multipliers used to !> obtain the factor U or L as computed by SSYTRF_ROOK. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by SSYTRF_ROOK. !>
B
!> B is REAL array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B. !> On exit, the solution matrix X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
!> !> April 2012, Igor Kozachenko, !> Computer Science Division, !> University of California, Berkeley !> !> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, !> School of Mathematics, !> University of Manchester !> !>
Definition at line 134 of file ssytrs_rook.f.
subroutine ZHETRS_ROOK (character uplo, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb, integer info)¶
ZHETRS_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using factorization obtained with one of the bounded diagonal pivoting methods (max 2 interchanges)
Purpose:
!> !> ZHETRS_ROOK solves a system of linear equations A*X = B with a complex !> Hermitian matrix A using the factorization A = U*D*U**H or !> A = L*D*L**H computed by ZHETRF_ROOK. !>
Parameters
!> UPLO is CHARACTER*1 !> Specifies whether the details of the factorization are stored !> as an upper or lower triangular matrix. !> = 'U': Upper triangular, form is A = U*D*U**H; !> = 'L': Lower triangular, form is A = L*D*L**H. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> The block diagonal matrix D and the multipliers used to !> obtain the factor U or L as computed by ZHETRF_ROOK. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by ZHETRF_ROOK. !>
B
!> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B. !> On exit, the solution matrix X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
!> !> November 2013, Igor Kozachenko, !> Computer Science Division, !> University of California, Berkeley !> !> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, !> School of Mathematics, !> University of Manchester !> !>
Definition at line 134 of file zhetrs_rook.f.
subroutine ZSYTRS_ROOK (character uplo, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb, integer info)¶
ZSYTRS_ROOK
Purpose:
!> !> ZSYTRS_ROOK solves a system of linear equations A*X = B with !> a complex symmetric matrix A using the factorization A = U*D*U**T or !> A = L*D*L**T computed by ZSYTRF_ROOK. !>
Parameters
!> UPLO is CHARACTER*1 !> Specifies whether the details of the factorization are stored !> as an upper or lower triangular matrix. !> = 'U': Upper triangular, form is A = U*D*U**T; !> = 'L': Lower triangular, form is A = L*D*L**T. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> The block diagonal matrix D and the multipliers used to !> obtain the factor U or L as computed by ZSYTRF_ROOK. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by ZSYTRF_ROOK. !>
B
!> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B. !> On exit, the solution matrix X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
!> !> December 2016, Igor Kozachenko, !> Computer Science Division, !> University of California, Berkeley !> !> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, !> School of Mathematics, !> University of Manchester !> !>
Definition at line 134 of file zsytrs_rook.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |