Scroll to navigation

hetrs_rook(3) Library Functions Manual hetrs_rook(3)

NAME

hetrs_rook - {he,sy}trs_rook: triangular solve using factor

SYNOPSIS

Functions


subroutine CHETRS_ROOK (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
CHETRS_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using factorization obtained with one of the bounded diagonal pivoting methods (max 2 interchanges) subroutine CSYTRS_ROOK (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
CSYTRS_ROOK subroutine DSYTRS_ROOK (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
DSYTRS_ROOK subroutine SSYTRS_ROOK (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
SSYTRS_ROOK subroutine ZHETRS_ROOK (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
ZHETRS_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using factorization obtained with one of the bounded diagonal pivoting methods (max 2 interchanges) subroutine ZSYTRS_ROOK (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
ZSYTRS_ROOK

Detailed Description

Function Documentation

subroutine CHETRS_ROOK (character uplo, integer n, integer nrhs, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex, dimension( ldb, * ) b, integer ldb, integer info)

CHETRS_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using factorization obtained with one of the bounded diagonal pivoting methods (max 2 interchanges)

Purpose:

!>
!> CHETRS_ROOK solves a system of linear equations A*X = B with a complex
!> Hermitian matrix A using the factorization A = U*D*U**H or
!> A = L*D*L**H computed by CHETRF_ROOK.
!> 

Parameters

UPLO

!>          UPLO is CHARACTER*1
!>          Specifies whether the details of the factorization are stored
!>          as an upper or lower triangular matrix.
!>          = 'U':  Upper triangular, form is A = U*D*U**H;
!>          = 'L':  Lower triangular, form is A = L*D*L**H.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

NRHS

!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 

A

!>          A is COMPLEX array, dimension (LDA,N)
!>          The block diagonal matrix D and the multipliers used to
!>          obtain the factor U or L as computed by CHETRF_ROOK.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 

IPIV

!>          IPIV is INTEGER array, dimension (N)
!>          Details of the interchanges and the block structure of D
!>          as determined by CHETRF_ROOK.
!> 

B

!>          B is COMPLEX array, dimension (LDB,NRHS)
!>          On entry, the right hand side matrix B.
!>          On exit, the solution matrix X.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

!>
!>  November 2013,  Igor Kozachenko,
!>                  Computer Science Division,
!>                  University of California, Berkeley
!>
!>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
!>                  School of Mathematics,
!>                  University of Manchester
!>
!> 

Definition at line 134 of file chetrs_rook.f.

subroutine CSYTRS_ROOK (character uplo, integer n, integer nrhs, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex, dimension( ldb, * ) b, integer ldb, integer info)

CSYTRS_ROOK

Purpose:

!>
!> CSYTRS_ROOK solves a system of linear equations A*X = B with
!> a complex symmetric matrix A using the factorization A = U*D*U**T or
!> A = L*D*L**T computed by CSYTRF_ROOK.
!> 

Parameters

UPLO

!>          UPLO is CHARACTER*1
!>          Specifies whether the details of the factorization are stored
!>          as an upper or lower triangular matrix.
!>          = 'U':  Upper triangular, form is A = U*D*U**T;
!>          = 'L':  Lower triangular, form is A = L*D*L**T.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

NRHS

!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 

A

!>          A is COMPLEX array, dimension (LDA,N)
!>          The block diagonal matrix D and the multipliers used to
!>          obtain the factor U or L as computed by CSYTRF_ROOK.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 

IPIV

!>          IPIV is INTEGER array, dimension (N)
!>          Details of the interchanges and the block structure of D
!>          as determined by CSYTRF_ROOK.
!> 

B

!>          B is COMPLEX array, dimension (LDB,NRHS)
!>          On entry, the right hand side matrix B.
!>          On exit, the solution matrix X.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

!>
!>   December 2016, Igor Kozachenko,
!>                  Computer Science Division,
!>                  University of California, Berkeley
!>
!>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
!>                  School of Mathematics,
!>                  University of Manchester
!>
!> 

Definition at line 134 of file csytrs_rook.f.

subroutine DSYTRS_ROOK (character uplo, integer n, integer nrhs, double precision, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, double precision, dimension( ldb, * ) b, integer ldb, integer info)

DSYTRS_ROOK

Purpose:

!>
!> DSYTRS_ROOK solves a system of linear equations A*X = B with
!> a real symmetric matrix A using the factorization A = U*D*U**T or
!> A = L*D*L**T computed by DSYTRF_ROOK.
!> 

Parameters

UPLO

!>          UPLO is CHARACTER*1
!>          Specifies whether the details of the factorization are stored
!>          as an upper or lower triangular matrix.
!>          = 'U':  Upper triangular, form is A = U*D*U**T;
!>          = 'L':  Lower triangular, form is A = L*D*L**T.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

NRHS

!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 

A

!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          The block diagonal matrix D and the multipliers used to
!>          obtain the factor U or L as computed by DSYTRF_ROOK.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 

IPIV

!>          IPIV is INTEGER array, dimension (N)
!>          Details of the interchanges and the block structure of D
!>          as determined by DSYTRF_ROOK.
!> 

B

!>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
!>          On entry, the right hand side matrix B.
!>          On exit, the solution matrix X.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

!>
!>   April 2012, Igor Kozachenko,
!>                  Computer Science Division,
!>                  University of California, Berkeley
!>
!>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
!>                  School of Mathematics,
!>                  University of Manchester
!>
!> 

Definition at line 134 of file dsytrs_rook.f.

subroutine SSYTRS_ROOK (character uplo, integer n, integer nrhs, real, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, real, dimension( ldb, * ) b, integer ldb, integer info)

SSYTRS_ROOK

Purpose:

!>
!> SSYTRS_ROOK solves a system of linear equations A*X = B with
!> a real symmetric matrix A using the factorization A = U*D*U**T or
!> A = L*D*L**T computed by SSYTRF_ROOK.
!> 

Parameters

UPLO

!>          UPLO is CHARACTER*1
!>          Specifies whether the details of the factorization are stored
!>          as an upper or lower triangular matrix.
!>          = 'U':  Upper triangular, form is A = U*D*U**T;
!>          = 'L':  Lower triangular, form is A = L*D*L**T.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

NRHS

!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 

A

!>          A is REAL array, dimension (LDA,N)
!>          The block diagonal matrix D and the multipliers used to
!>          obtain the factor U or L as computed by SSYTRF_ROOK.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 

IPIV

!>          IPIV is INTEGER array, dimension (N)
!>          Details of the interchanges and the block structure of D
!>          as determined by SSYTRF_ROOK.
!> 

B

!>          B is REAL array, dimension (LDB,NRHS)
!>          On entry, the right hand side matrix B.
!>          On exit, the solution matrix X.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

!>
!>   April 2012, Igor Kozachenko,
!>                  Computer Science Division,
!>                  University of California, Berkeley
!>
!>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
!>                  School of Mathematics,
!>                  University of Manchester
!>
!> 

Definition at line 134 of file ssytrs_rook.f.

subroutine ZHETRS_ROOK (character uplo, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb, integer info)

ZHETRS_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using factorization obtained with one of the bounded diagonal pivoting methods (max 2 interchanges)

Purpose:

!>
!> ZHETRS_ROOK solves a system of linear equations A*X = B with a complex
!> Hermitian matrix A using the factorization A = U*D*U**H or
!> A = L*D*L**H computed by ZHETRF_ROOK.
!> 

Parameters

UPLO

!>          UPLO is CHARACTER*1
!>          Specifies whether the details of the factorization are stored
!>          as an upper or lower triangular matrix.
!>          = 'U':  Upper triangular, form is A = U*D*U**H;
!>          = 'L':  Lower triangular, form is A = L*D*L**H.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

NRHS

!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 

A

!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          The block diagonal matrix D and the multipliers used to
!>          obtain the factor U or L as computed by ZHETRF_ROOK.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 

IPIV

!>          IPIV is INTEGER array, dimension (N)
!>          Details of the interchanges and the block structure of D
!>          as determined by ZHETRF_ROOK.
!> 

B

!>          B is COMPLEX*16 array, dimension (LDB,NRHS)
!>          On entry, the right hand side matrix B.
!>          On exit, the solution matrix X.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

!>
!>  November 2013,  Igor Kozachenko,
!>                  Computer Science Division,
!>                  University of California, Berkeley
!>
!>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
!>                  School of Mathematics,
!>                  University of Manchester
!>
!> 

Definition at line 134 of file zhetrs_rook.f.

subroutine ZSYTRS_ROOK (character uplo, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb, integer info)

ZSYTRS_ROOK

Purpose:

!>
!> ZSYTRS_ROOK solves a system of linear equations A*X = B with
!> a complex symmetric matrix A using the factorization A = U*D*U**T or
!> A = L*D*L**T computed by ZSYTRF_ROOK.
!> 

Parameters

UPLO

!>          UPLO is CHARACTER*1
!>          Specifies whether the details of the factorization are stored
!>          as an upper or lower triangular matrix.
!>          = 'U':  Upper triangular, form is A = U*D*U**T;
!>          = 'L':  Lower triangular, form is A = L*D*L**T.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

NRHS

!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 

A

!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          The block diagonal matrix D and the multipliers used to
!>          obtain the factor U or L as computed by ZSYTRF_ROOK.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 

IPIV

!>          IPIV is INTEGER array, dimension (N)
!>          Details of the interchanges and the block structure of D
!>          as determined by ZSYTRF_ROOK.
!> 

B

!>          B is COMPLEX*16 array, dimension (LDB,NRHS)
!>          On entry, the right hand side matrix B.
!>          On exit, the solution matrix X.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

!>
!>   December 2016, Igor Kozachenko,
!>                  Computer Science Division,
!>                  University of California, Berkeley
!>
!>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
!>                  School of Mathematics,
!>                  University of Manchester
!>
!> 

Definition at line 134 of file zsytrs_rook.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK