table of contents
hetrs(3) | Library Functions Manual | hetrs(3) |
NAME¶
hetrs - {he,sy}trs: triangular solve using factor
SYNOPSIS¶
Functions¶
subroutine CHETRS (uplo, n, nrhs, a, lda, ipiv, b, ldb,
info)
CHETRS subroutine CSYTRS (uplo, n, nrhs, a, lda, ipiv, b, ldb,
info)
CSYTRS subroutine DSYTRS (uplo, n, nrhs, a, lda, ipiv, b, ldb,
info)
DSYTRS subroutine SSYTRS (uplo, n, nrhs, a, lda, ipiv, b, ldb,
info)
SSYTRS subroutine ZHETRS (uplo, n, nrhs, a, lda, ipiv, b, ldb,
info)
ZHETRS subroutine ZSYTRS (uplo, n, nrhs, a, lda, ipiv, b, ldb,
info)
ZSYTRS
Detailed Description¶
Function Documentation¶
subroutine CHETRS (character uplo, integer n, integer nrhs, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex, dimension( ldb, * ) b, integer ldb, integer info)¶
CHETRS
Purpose:
!> !> CHETRS solves a system of linear equations A*X = B with a complex !> Hermitian matrix A using the factorization A = U*D*U**H or !> A = L*D*L**H computed by CHETRF. !>
Parameters
!> UPLO is CHARACTER*1 !> Specifies whether the details of the factorization are stored !> as an upper or lower triangular matrix. !> = 'U': Upper triangular, form is A = U*D*U**H; !> = 'L': Lower triangular, form is A = L*D*L**H. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> The block diagonal matrix D and the multipliers used to !> obtain the factor U or L as computed by CHETRF. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by CHETRF. !>
B
!> B is COMPLEX array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B. !> On exit, the solution matrix X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 119 of file chetrs.f.
subroutine CSYTRS (character uplo, integer n, integer nrhs, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex, dimension( ldb, * ) b, integer ldb, integer info)¶
CSYTRS
Purpose:
!> !> CSYTRS solves a system of linear equations A*X = B with a complex !> symmetric matrix A using the factorization A = U*D*U**T or !> A = L*D*L**T computed by CSYTRF. !>
Parameters
!> UPLO is CHARACTER*1 !> Specifies whether the details of the factorization are stored !> as an upper or lower triangular matrix. !> = 'U': Upper triangular, form is A = U*D*U**T; !> = 'L': Lower triangular, form is A = L*D*L**T. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> The block diagonal matrix D and the multipliers used to !> obtain the factor U or L as computed by CSYTRF. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by CSYTRF. !>
B
!> B is COMPLEX array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B. !> On exit, the solution matrix X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 119 of file csytrs.f.
subroutine DSYTRS (character uplo, integer n, integer nrhs, double precision, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, double precision, dimension( ldb, * ) b, integer ldb, integer info)¶
DSYTRS
Purpose:
!> !> DSYTRS solves a system of linear equations A*X = B with a real !> symmetric matrix A using the factorization A = U*D*U**T or !> A = L*D*L**T computed by DSYTRF. !>
Parameters
!> UPLO is CHARACTER*1 !> Specifies whether the details of the factorization are stored !> as an upper or lower triangular matrix. !> = 'U': Upper triangular, form is A = U*D*U**T; !> = 'L': Lower triangular, form is A = L*D*L**T. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
A
!> A is DOUBLE PRECISION array, dimension (LDA,N) !> The block diagonal matrix D and the multipliers used to !> obtain the factor U or L as computed by DSYTRF. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by DSYTRF. !>
B
!> B is DOUBLE PRECISION array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B. !> On exit, the solution matrix X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 119 of file dsytrs.f.
subroutine SSYTRS (character uplo, integer n, integer nrhs, real, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, real, dimension( ldb, * ) b, integer ldb, integer info)¶
SSYTRS
Purpose:
!> !> SSYTRS solves a system of linear equations A*X = B with a real !> symmetric matrix A using the factorization A = U*D*U**T or !> A = L*D*L**T computed by SSYTRF. !>
Parameters
!> UPLO is CHARACTER*1 !> Specifies whether the details of the factorization are stored !> as an upper or lower triangular matrix. !> = 'U': Upper triangular, form is A = U*D*U**T; !> = 'L': Lower triangular, form is A = L*D*L**T. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
A
!> A is REAL array, dimension (LDA,N) !> The block diagonal matrix D and the multipliers used to !> obtain the factor U or L as computed by SSYTRF. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by SSYTRF. !>
B
!> B is REAL array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B. !> On exit, the solution matrix X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 119 of file ssytrs.f.
subroutine ZHETRS (character uplo, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb, integer info)¶
ZHETRS
Purpose:
!> !> ZHETRS solves a system of linear equations A*X = B with a complex !> Hermitian matrix A using the factorization A = U*D*U**H or !> A = L*D*L**H computed by ZHETRF. !>
Parameters
!> UPLO is CHARACTER*1 !> Specifies whether the details of the factorization are stored !> as an upper or lower triangular matrix. !> = 'U': Upper triangular, form is A = U*D*U**H; !> = 'L': Lower triangular, form is A = L*D*L**H. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> The block diagonal matrix D and the multipliers used to !> obtain the factor U or L as computed by ZHETRF. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by ZHETRF. !>
B
!> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B. !> On exit, the solution matrix X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 119 of file zhetrs.f.
subroutine ZSYTRS (character uplo, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb, integer info)¶
ZSYTRS
Purpose:
!> !> ZSYTRS solves a system of linear equations A*X = B with a complex !> symmetric matrix A using the factorization A = U*D*U**T or !> A = L*D*L**T computed by ZSYTRF. !>
Parameters
!> UPLO is CHARACTER*1 !> Specifies whether the details of the factorization are stored !> as an upper or lower triangular matrix. !> = 'U': Upper triangular, form is A = U*D*U**T; !> = 'L': Lower triangular, form is A = L*D*L**T. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> The block diagonal matrix D and the multipliers used to !> obtain the factor U or L as computed by ZSYTRF. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by ZSYTRF. !>
B
!> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B. !> On exit, the solution matrix X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 119 of file zsytrs.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |