table of contents
| hesv(3) | Library Functions Manual | hesv(3) |
NAME¶
hesv - {he,sy}sv: rook (v1)
SYNOPSIS¶
Functions¶
subroutine CHESV (uplo, n, nrhs, a, lda, ipiv, b, ldb,
work, lwork, info)
CHESV computes the solution to system of linear equations A * X = B for HE
matrices subroutine CSYSV (uplo, n, nrhs, a, lda, ipiv, b, ldb,
work, lwork, info)
CSYSV computes the solution to system of linear equations A * X = B for SY
matrices subroutine DSYSV (uplo, n, nrhs, a, lda, ipiv, b, ldb,
work, lwork, info)
DSYSV computes the solution to system of linear equations A * X = B for SY
matrices subroutine SSYSV (uplo, n, nrhs, a, lda, ipiv, b, ldb,
work, lwork, info)
SSYSV computes the solution to system of linear equations A * X = B for SY
matrices subroutine ZHESV (uplo, n, nrhs, a, lda, ipiv, b, ldb,
work, lwork, info)
ZHESV computes the solution to system of linear equations A * X = B for HE
matrices subroutine ZSYSV (uplo, n, nrhs, a, lda, ipiv, b, ldb,
work, lwork, info)
ZSYSV computes the solution to system of linear equations A * X = B for SY
matrices
Detailed Description¶
Function Documentation¶
subroutine CHESV (character uplo, integer n, integer nrhs, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( * ) work, integer lwork, integer info)¶
CHESV computes the solution to system of linear equations A * X = B for HE matrices
Purpose:
!> !> CHESV computes the solution to a complex system of linear equations !> A * X = B, !> where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS !> matrices. !> !> The diagonal pivoting method is used to factor A as !> A = U * D * U**H, if UPLO = 'U', or !> A = L * D * L**H, if UPLO = 'L', !> where U (or L) is a product of permutation and unit upper (lower) !> triangular matrices, and D is Hermitian and block diagonal with !> 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then !> used to solve the system of equations A * X = B. !>
Parameters
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The number of linear equations, i.e., the order of the !> matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> On entry, the Hermitian matrix A. If UPLO = 'U', the leading !> N-by-N upper triangular part of A contains the upper !> triangular part of the matrix A, and the strictly lower !> triangular part of A is not referenced. If UPLO = 'L', the !> leading N-by-N lower triangular part of A contains the lower !> triangular part of the matrix A, and the strictly upper !> triangular part of A is not referenced. !> !> On exit, if INFO = 0, the block diagonal matrix D and the !> multipliers used to obtain the factor U or L from the !> factorization A = U*D*U**H or A = L*D*L**H as computed by !> CHETRF. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D, as !> determined by CHETRF. If IPIV(k) > 0, then rows and columns !> k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1 !> diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, !> then rows and columns k-1 and -IPIV(k) were interchanged and !> D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and !> IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and !> -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 !> diagonal block. !>
B
!> B is COMPLEX array, dimension (LDB,NRHS) !> On entry, the N-by-NRHS right hand side matrix B. !> On exit, if INFO = 0, the N-by-NRHS solution matrix X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
WORK
!> WORK is COMPLEX array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The length of WORK. LWORK >= 1, and for best performance !> LWORK >= max(1,N*NB), where NB is the optimal blocksize for !> CHETRF. !> for LWORK < N, TRS will be done with Level BLAS 2 !> for LWORK >= N, TRS will be done with Level BLAS 3 !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, D(i,i) is exactly zero. The factorization !> has been completed, but the block diagonal matrix D is !> exactly singular, so the solution could not be computed. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 169 of file chesv.f.
subroutine CSYSV (character uplo, integer n, integer nrhs, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( * ) work, integer lwork, integer info)¶
CSYSV computes the solution to system of linear equations A * X = B for SY matrices
Purpose:
!> !> CSYSV computes the solution to a complex system of linear equations !> A * X = B, !> where A is an N-by-N symmetric matrix and X and B are N-by-NRHS !> matrices. !> !> The diagonal pivoting method is used to factor A as !> A = U * D * U**T, if UPLO = 'U', or !> A = L * D * L**T, if UPLO = 'L', !> where U (or L) is a product of permutation and unit upper (lower) !> triangular matrices, and D is symmetric and block diagonal with !> 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then !> used to solve the system of equations A * X = B. !>
Parameters
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The number of linear equations, i.e., the order of the !> matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> On entry, the symmetric matrix A. If UPLO = 'U', the leading !> N-by-N upper triangular part of A contains the upper !> triangular part of the matrix A, and the strictly lower !> triangular part of A is not referenced. If UPLO = 'L', the !> leading N-by-N lower triangular part of A contains the lower !> triangular part of the matrix A, and the strictly upper !> triangular part of A is not referenced. !> !> On exit, if INFO = 0, the block diagonal matrix D and the !> multipliers used to obtain the factor U or L from the !> factorization A = U*D*U**T or A = L*D*L**T as computed by !> CSYTRF. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D, as !> determined by CSYTRF. If IPIV(k) > 0, then rows and columns !> k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1 !> diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, !> then rows and columns k-1 and -IPIV(k) were interchanged and !> D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and !> IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and !> -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 !> diagonal block. !>
B
!> B is COMPLEX array, dimension (LDB,NRHS) !> On entry, the N-by-NRHS right hand side matrix B. !> On exit, if INFO = 0, the N-by-NRHS solution matrix X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
WORK
!> WORK is COMPLEX array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The length of WORK. LWORK >= 1, and for best performance !> LWORK >= max(1,N*NB), where NB is the optimal blocksize for !> CSYTRF. !> for LWORK < N, TRS will be done with Level BLAS 2 !> for LWORK >= N, TRS will be done with Level BLAS 3 !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, D(i,i) is exactly zero. The factorization !> has been completed, but the block diagonal matrix D is !> exactly singular, so the solution could not be computed. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 169 of file csysv.f.
subroutine DSYSV (character uplo, integer n, integer nrhs, double precision, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( * ) work, integer lwork, integer info)¶
DSYSV computes the solution to system of linear equations A * X = B for SY matrices
Purpose:
!> !> DSYSV computes the solution to a real system of linear equations !> A * X = B, !> where A is an N-by-N symmetric matrix and X and B are N-by-NRHS !> matrices. !> !> The diagonal pivoting method is used to factor A as !> A = U * D * U**T, if UPLO = 'U', or !> A = L * D * L**T, if UPLO = 'L', !> where U (or L) is a product of permutation and unit upper (lower) !> triangular matrices, and D is symmetric and block diagonal with !> 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then !> used to solve the system of equations A * X = B. !>
Parameters
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The number of linear equations, i.e., the order of the !> matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
A
!> A is DOUBLE PRECISION array, dimension (LDA,N) !> On entry, the symmetric matrix A. If UPLO = 'U', the leading !> N-by-N upper triangular part of A contains the upper !> triangular part of the matrix A, and the strictly lower !> triangular part of A is not referenced. If UPLO = 'L', the !> leading N-by-N lower triangular part of A contains the lower !> triangular part of the matrix A, and the strictly upper !> triangular part of A is not referenced. !> !> On exit, if INFO = 0, the block diagonal matrix D and the !> multipliers used to obtain the factor U or L from the !> factorization A = U*D*U**T or A = L*D*L**T as computed by !> DSYTRF. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D, as !> determined by DSYTRF. If IPIV(k) > 0, then rows and columns !> k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1 !> diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, !> then rows and columns k-1 and -IPIV(k) were interchanged and !> D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and !> IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and !> -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 !> diagonal block. !>
B
!> B is DOUBLE PRECISION array, dimension (LDB,NRHS) !> On entry, the N-by-NRHS right hand side matrix B. !> On exit, if INFO = 0, the N-by-NRHS solution matrix X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The length of WORK. LWORK >= 1, and for best performance !> LWORK >= max(1,N*NB), where NB is the optimal blocksize for !> DSYTRF. !> for LWORK < N, TRS will be done with Level BLAS 2 !> for LWORK >= N, TRS will be done with Level BLAS 3 !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, D(i,i) is exactly zero. The factorization !> has been completed, but the block diagonal matrix D is !> exactly singular, so the solution could not be computed. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 169 of file dsysv.f.
subroutine SSYSV (character uplo, integer n, integer nrhs, real, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, real, dimension( ldb, * ) b, integer ldb, real, dimension( * ) work, integer lwork, integer info)¶
SSYSV computes the solution to system of linear equations A * X = B for SY matrices
Purpose:
!> !> SSYSV computes the solution to a real system of linear equations !> A * X = B, !> where A is an N-by-N symmetric matrix and X and B are N-by-NRHS !> matrices. !> !> The diagonal pivoting method is used to factor A as !> A = U * D * U**T, if UPLO = 'U', or !> A = L * D * L**T, if UPLO = 'L', !> where U (or L) is a product of permutation and unit upper (lower) !> triangular matrices, and D is symmetric and block diagonal with !> 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then !> used to solve the system of equations A * X = B. !>
Parameters
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The number of linear equations, i.e., the order of the !> matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
A
!> A is REAL array, dimension (LDA,N) !> On entry, the symmetric matrix A. If UPLO = 'U', the leading !> N-by-N upper triangular part of A contains the upper !> triangular part of the matrix A, and the strictly lower !> triangular part of A is not referenced. If UPLO = 'L', the !> leading N-by-N lower triangular part of A contains the lower !> triangular part of the matrix A, and the strictly upper !> triangular part of A is not referenced. !> !> On exit, if INFO = 0, the block diagonal matrix D and the !> multipliers used to obtain the factor U or L from the !> factorization A = U*D*U**T or A = L*D*L**T as computed by !> SSYTRF. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D, as !> determined by SSYTRF. If IPIV(k) > 0, then rows and columns !> k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1 !> diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, !> then rows and columns k-1 and -IPIV(k) were interchanged and !> D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and !> IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and !> -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 !> diagonal block. !>
B
!> B is REAL array, dimension (LDB,NRHS) !> On entry, the N-by-NRHS right hand side matrix B. !> On exit, if INFO = 0, the N-by-NRHS solution matrix X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
WORK
!> WORK is REAL array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The length of WORK. LWORK >= 1, and for best performance !> LWORK >= max(1,N*NB), where NB is the optimal blocksize for !> SSYTRF. !> for LWORK < N, TRS will be done with Level BLAS 2 !> for LWORK >= N, TRS will be done with Level BLAS 3 !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, D(i,i) is exactly zero. The factorization !> has been completed, but the block diagonal matrix D is !> exactly singular, so the solution could not be computed. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 169 of file ssysv.f.
subroutine ZHESV (character uplo, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( * ) work, integer lwork, integer info)¶
ZHESV computes the solution to system of linear equations A * X = B for HE matrices
Purpose:
!> !> ZHESV computes the solution to a complex system of linear equations !> A * X = B, !> where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS !> matrices. !> !> The diagonal pivoting method is used to factor A as !> A = U * D * U**H, if UPLO = 'U', or !> A = L * D * L**H, if UPLO = 'L', !> where U (or L) is a product of permutation and unit upper (lower) !> triangular matrices, and D is Hermitian and block diagonal with !> 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then !> used to solve the system of equations A * X = B. !>
Parameters
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The number of linear equations, i.e., the order of the !> matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the Hermitian matrix A. If UPLO = 'U', the leading !> N-by-N upper triangular part of A contains the upper !> triangular part of the matrix A, and the strictly lower !> triangular part of A is not referenced. If UPLO = 'L', the !> leading N-by-N lower triangular part of A contains the lower !> triangular part of the matrix A, and the strictly upper !> triangular part of A is not referenced. !> !> On exit, if INFO = 0, the block diagonal matrix D and the !> multipliers used to obtain the factor U or L from the !> factorization A = U*D*U**H or A = L*D*L**H as computed by !> ZHETRF. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D, as !> determined by ZHETRF. If IPIV(k) > 0, then rows and columns !> k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1 !> diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, !> then rows and columns k-1 and -IPIV(k) were interchanged and !> D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and !> IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and !> -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 !> diagonal block. !>
B
!> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the N-by-NRHS right hand side matrix B. !> On exit, if INFO = 0, the N-by-NRHS solution matrix X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
WORK
!> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The length of WORK. LWORK >= 1, and for best performance !> LWORK >= max(1,N*NB), where NB is the optimal blocksize for !> ZHETRF. !> for LWORK < N, TRS will be done with Level BLAS 2 !> for LWORK >= N, TRS will be done with Level BLAS 3 !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, D(i,i) is exactly zero. The factorization !> has been completed, but the block diagonal matrix D is !> exactly singular, so the solution could not be computed. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 169 of file zhesv.f.
subroutine ZSYSV (character uplo, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( * ) work, integer lwork, integer info)¶
ZSYSV computes the solution to system of linear equations A * X = B for SY matrices
Purpose:
!> !> ZSYSV computes the solution to a complex system of linear equations !> A * X = B, !> where A is an N-by-N symmetric matrix and X and B are N-by-NRHS !> matrices. !> !> The diagonal pivoting method is used to factor A as !> A = U * D * U**T, if UPLO = 'U', or !> A = L * D * L**T, if UPLO = 'L', !> where U (or L) is a product of permutation and unit upper (lower) !> triangular matrices, and D is symmetric and block diagonal with !> 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then !> used to solve the system of equations A * X = B. !>
Parameters
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The number of linear equations, i.e., the order of the !> matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the symmetric matrix A. If UPLO = 'U', the leading !> N-by-N upper triangular part of A contains the upper !> triangular part of the matrix A, and the strictly lower !> triangular part of A is not referenced. If UPLO = 'L', the !> leading N-by-N lower triangular part of A contains the lower !> triangular part of the matrix A, and the strictly upper !> triangular part of A is not referenced. !> !> On exit, if INFO = 0, the block diagonal matrix D and the !> multipliers used to obtain the factor U or L from the !> factorization A = U*D*U**T or A = L*D*L**T as computed by !> ZSYTRF. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D, as !> determined by ZSYTRF. If IPIV(k) > 0, then rows and columns !> k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1 !> diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, !> then rows and columns k-1 and -IPIV(k) were interchanged and !> D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and !> IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and !> -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 !> diagonal block. !>
B
!> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the N-by-NRHS right hand side matrix B. !> On exit, if INFO = 0, the N-by-NRHS solution matrix X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
WORK
!> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The length of WORK. LWORK >= 1, and for best performance !> LWORK >= max(1,N*NB), where NB is the optimal blocksize for !> ZSYTRF. !> for LWORK < N, TRS will be done with Level BLAS 2 !> for LWORK >= N, TRS will be done with Level BLAS 3 !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, D(i,i) is exactly zero. The factorization !> has been completed, but the block diagonal matrix D is !> exactly singular, so the solution could not be computed. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 169 of file zsysv.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
| Version 3.12.0 | LAPACK |