table of contents
heequb(3) | Library Functions Manual | heequb(3) |
NAME¶
heequb - {he,sy}equb: equilibration, power of 2
SYNOPSIS¶
Functions¶
subroutine CHEEQUB (uplo, n, a, lda, s, scond, amax, work,
info)
CHEEQUB subroutine CSYEQUB (uplo, n, a, lda, s, scond, amax,
work, info)
CSYEQUB subroutine DSYEQUB (uplo, n, a, lda, s, scond, amax,
work, info)
DSYEQUB subroutine SSYEQUB (uplo, n, a, lda, s, scond, amax,
work, info)
SSYEQUB subroutine ZHEEQUB (uplo, n, a, lda, s, scond, amax,
work, info)
ZHEEQUB subroutine ZSYEQUB (uplo, n, a, lda, s, scond, amax,
work, info)
ZSYEQUB
Detailed Description¶
Function Documentation¶
subroutine CHEEQUB (character uplo, integer n, complex, dimension( lda, * ) a, integer lda, real, dimension( * ) s, real scond, real amax, complex, dimension( * ) work, integer info)¶
CHEEQUB
Purpose:
!> !> CHEEQUB computes row and column scalings intended to equilibrate a !> Hermitian matrix A (with respect to the Euclidean norm) and reduce !> its condition number. The scale factors S are computed by the BIN !> algorithm (see references) so that the scaled matrix B with elements !> B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of !> the smallest possible condition number over all possible diagonal !> scalings. !>
Parameters
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> The N-by-N Hermitian matrix whose scaling factors are to be !> computed. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
S
!> S is REAL array, dimension (N) !> If INFO = 0, S contains the scale factors for A. !>
SCOND
!> SCOND is REAL !> If INFO = 0, S contains the ratio of the smallest S(i) to !> the largest S(i). If SCOND >= 0.1 and AMAX is neither too !> large nor too small, it is not worth scaling by S. !>
AMAX
!> AMAX is REAL !> Largest absolute value of any matrix element. If AMAX is !> very close to overflow or very close to underflow, the !> matrix should be scaled. !>
WORK
!> WORK is COMPLEX array, dimension (2*N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the i-th diagonal element is nonpositive. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
References:
Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004.
DOI 10.1023/B:NUMA.0000016606.32820.69
Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
Definition at line 131 of file cheequb.f.
subroutine CSYEQUB (character uplo, integer n, complex, dimension( lda, * ) a, integer lda, real, dimension( * ) s, real scond, real amax, complex, dimension( * ) work, integer info)¶
CSYEQUB
Purpose:
!> !> CSYEQUB computes row and column scalings intended to equilibrate a !> symmetric matrix A (with respect to the Euclidean norm) and reduce !> its condition number. The scale factors S are computed by the BIN !> algorithm (see references) so that the scaled matrix B with elements !> B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of !> the smallest possible condition number over all possible diagonal !> scalings. !>
Parameters
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> The N-by-N symmetric matrix whose scaling factors are to be !> computed. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
S
!> S is REAL array, dimension (N) !> If INFO = 0, S contains the scale factors for A. !>
SCOND
!> SCOND is REAL !> If INFO = 0, S contains the ratio of the smallest S(i) to !> the largest S(i). If SCOND >= 0.1 and AMAX is neither too !> large nor too small, it is not worth scaling by S. !>
AMAX
!> AMAX is REAL !> Largest absolute value of any matrix element. If AMAX is !> very close to overflow or very close to underflow, the !> matrix should be scaled. !>
WORK
!> WORK is COMPLEX array, dimension (2*N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the i-th diagonal element is nonpositive. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
References:
Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004.
DOI 10.1023/B:NUMA.0000016606.32820.69
Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
Definition at line 131 of file csyequb.f.
subroutine DSYEQUB (character uplo, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) s, double precision scond, double precision amax, double precision, dimension( * ) work, integer info)¶
DSYEQUB
Purpose:
!> !> DSYEQUB computes row and column scalings intended to equilibrate a !> symmetric matrix A (with respect to the Euclidean norm) and reduce !> its condition number. The scale factors S are computed by the BIN !> algorithm (see references) so that the scaled matrix B with elements !> B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of !> the smallest possible condition number over all possible diagonal !> scalings. !>
Parameters
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
A
!> A is DOUBLE PRECISION array, dimension (LDA,N) !> The N-by-N symmetric matrix whose scaling factors are to be !> computed. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
S
!> S is DOUBLE PRECISION array, dimension (N) !> If INFO = 0, S contains the scale factors for A. !>
SCOND
!> SCOND is DOUBLE PRECISION !> If INFO = 0, S contains the ratio of the smallest S(i) to !> the largest S(i). If SCOND >= 0.1 and AMAX is neither too !> large nor too small, it is not worth scaling by S. !>
AMAX
!> AMAX is DOUBLE PRECISION !> Largest absolute value of any matrix element. If AMAX is !> very close to overflow or very close to underflow, the !> matrix should be scaled. !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (2*N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the i-th diagonal element is nonpositive. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
References:
Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004.
DOI 10.1023/B:NUMA.0000016606.32820.69
Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
Definition at line 130 of file dsyequb.f.
subroutine SSYEQUB (character uplo, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) s, real scond, real amax, real, dimension( * ) work, integer info)¶
SSYEQUB
Purpose:
!> !> SSYEQUB computes row and column scalings intended to equilibrate a !> symmetric matrix A (with respect to the Euclidean norm) and reduce !> its condition number. The scale factors S are computed by the BIN !> algorithm (see references) so that the scaled matrix B with elements !> B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of !> the smallest possible condition number over all possible diagonal !> scalings. !>
Parameters
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
A
!> A is REAL array, dimension (LDA,N) !> The N-by-N symmetric matrix whose scaling factors are to be !> computed. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
S
!> S is REAL array, dimension (N) !> If INFO = 0, S contains the scale factors for A. !>
SCOND
!> SCOND is REAL !> If INFO = 0, S contains the ratio of the smallest S(i) to !> the largest S(i). If SCOND >= 0.1 and AMAX is neither too !> large nor too small, it is not worth scaling by S. !>
AMAX
!> AMAX is REAL !> Largest absolute value of any matrix element. If AMAX is !> very close to overflow or very close to underflow, the !> matrix should be scaled. !>
WORK
!> WORK is REAL array, dimension (2*N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the i-th diagonal element is nonpositive. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
References:
Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004.
DOI 10.1023/B:NUMA.0000016606.32820.69
Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
Definition at line 130 of file ssyequb.f.
subroutine ZHEEQUB (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, double precision, dimension( * ) s, double precision scond, double precision amax, complex*16, dimension( * ) work, integer info)¶
ZHEEQUB
Purpose:
!> !> ZHEEQUB computes row and column scalings intended to equilibrate a !> Hermitian matrix A (with respect to the Euclidean norm) and reduce !> its condition number. The scale factors S are computed by the BIN !> algorithm (see references) so that the scaled matrix B with elements !> B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of !> the smallest possible condition number over all possible diagonal !> scalings. !>
Parameters
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> The N-by-N Hermitian matrix whose scaling factors are to be !> computed. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
S
!> S is DOUBLE PRECISION array, dimension (N) !> If INFO = 0, S contains the scale factors for A. !>
SCOND
!> SCOND is DOUBLE PRECISION !> If INFO = 0, S contains the ratio of the smallest S(i) to !> the largest S(i). If SCOND >= 0.1 and AMAX is neither too !> large nor too small, it is not worth scaling by S. !>
AMAX
!> AMAX is DOUBLE PRECISION !> Largest absolute value of any matrix element. If AMAX is !> very close to overflow or very close to underflow, the !> matrix should be scaled. !>
WORK
!> WORK is COMPLEX*16 array, dimension (2*N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the i-th diagonal element is nonpositive. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
References:
Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004.
DOI 10.1023/B:NUMA.0000016606.32820.69
Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
Definition at line 131 of file zheequb.f.
subroutine ZSYEQUB (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, double precision, dimension( * ) s, double precision scond, double precision amax, complex*16, dimension( * ) work, integer info)¶
ZSYEQUB
Purpose:
!> !> ZSYEQUB computes row and column scalings intended to equilibrate a !> symmetric matrix A (with respect to the Euclidean norm) and reduce !> its condition number. The scale factors S are computed by the BIN !> algorithm (see references) so that the scaled matrix B with elements !> B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of !> the smallest possible condition number over all possible diagonal !> scalings. !>
Parameters
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> The N-by-N symmetric matrix whose scaling factors are to be !> computed. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
S
!> S is DOUBLE PRECISION array, dimension (N) !> If INFO = 0, S contains the scale factors for A. !>
SCOND
!> SCOND is DOUBLE PRECISION !> If INFO = 0, S contains the ratio of the smallest S(i) to !> the largest S(i). If SCOND >= 0.1 and AMAX is neither too !> large nor too small, it is not worth scaling by S. !>
AMAX
!> AMAX is DOUBLE PRECISION !> Largest absolute value of any matrix element. If AMAX is !> very close to overflow or very close to underflow, the !> matrix should be scaled. !>
WORK
!> WORK is COMPLEX*16 array, dimension (2*N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the i-th diagonal element is nonpositive. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
References:
Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004.
DOI 10.1023/B:NUMA.0000016606.32820.69
Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
Definition at line 131 of file zsyequb.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |