table of contents
| gtts2(3) | Library Functions Manual | gtts2(3) |
NAME¶
gtts2 - gtts2: triangular solve using factor
SYNOPSIS¶
Functions¶
subroutine CGTTS2 (itrans, n, nrhs, dl, d, du, du2, ipiv,
b, ldb)
CGTTS2 solves a system of linear equations with a tridiagonal matrix
using the LU factorization computed by sgttrf. subroutine DGTTS2
(itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)
DGTTS2 solves a system of linear equations with a tridiagonal matrix
using the LU factorization computed by sgttrf. subroutine SGTTS2
(itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)
SGTTS2 solves a system of linear equations with a tridiagonal matrix
using the LU factorization computed by sgttrf. subroutine ZGTTS2
(itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)
ZGTTS2 solves a system of linear equations with a tridiagonal matrix
using the LU factorization computed by sgttrf.
Detailed Description¶
Function Documentation¶
subroutine CGTTS2 (integer itrans, integer n, integer nrhs, complex, dimension( * ) dl, complex, dimension( * ) d, complex, dimension( * ) du, complex, dimension( * ) du2, integer, dimension( * ) ipiv, complex, dimension( ldb, * ) b, integer ldb)¶
CGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by sgttrf.
Purpose:
!> !> CGTTS2 solves one of the systems of equations !> A * X = B, A**T * X = B, or A**H * X = B, !> with a tridiagonal matrix A using the LU factorization computed !> by CGTTRF. !>
Parameters
!> ITRANS is INTEGER !> Specifies the form of the system of equations. !> = 0: A * X = B (No transpose) !> = 1: A**T * X = B (Transpose) !> = 2: A**H * X = B (Conjugate transpose) !>
N
!> N is INTEGER !> The order of the matrix A. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
DL
!> DL is COMPLEX array, dimension (N-1) !> The (n-1) multipliers that define the matrix L from the !> LU factorization of A. !>
D
!> D is COMPLEX array, dimension (N) !> The n diagonal elements of the upper triangular matrix U from !> the LU factorization of A. !>
DU
!> DU is COMPLEX array, dimension (N-1) !> The (n-1) elements of the first super-diagonal of U. !>
DU2
!> DU2 is COMPLEX array, dimension (N-2) !> The (n-2) elements of the second super-diagonal of U. !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> The pivot indices; for 1 <= i <= n, row i of the matrix was !> interchanged with row IPIV(i). IPIV(i) will always be either !> i or i+1; IPIV(i) = i indicates a row interchange was not !> required. !>
B
!> B is COMPLEX array, dimension (LDB,NRHS) !> On entry, the matrix of right hand side vectors B. !> On exit, B is overwritten by the solution vectors X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 127 of file cgtts2.f.
subroutine DGTTS2 (integer itrans, integer n, integer nrhs, double precision, dimension( * ) dl, double precision, dimension( * ) d, double precision, dimension( * ) du, double precision, dimension( * ) du2, integer, dimension( * ) ipiv, double precision, dimension( ldb, * ) b, integer ldb)¶
DGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by sgttrf.
Purpose:
!> !> DGTTS2 solves one of the systems of equations !> A*X = B or A**T*X = B, !> with a tridiagonal matrix A using the LU factorization computed !> by DGTTRF. !>
Parameters
!> ITRANS is INTEGER !> Specifies the form of the system of equations. !> = 0: A * X = B (No transpose) !> = 1: A**T* X = B (Transpose) !> = 2: A**T* X = B (Conjugate transpose = Transpose) !>
N
!> N is INTEGER !> The order of the matrix A. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
DL
!> DL is DOUBLE PRECISION array, dimension (N-1) !> The (n-1) multipliers that define the matrix L from the !> LU factorization of A. !>
D
!> D is DOUBLE PRECISION array, dimension (N) !> The n diagonal elements of the upper triangular matrix U from !> the LU factorization of A. !>
DU
!> DU is DOUBLE PRECISION array, dimension (N-1) !> The (n-1) elements of the first super-diagonal of U. !>
DU2
!> DU2 is DOUBLE PRECISION array, dimension (N-2) !> The (n-2) elements of the second super-diagonal of U. !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> The pivot indices; for 1 <= i <= n, row i of the matrix was !> interchanged with row IPIV(i). IPIV(i) will always be either !> i or i+1; IPIV(i) = i indicates a row interchange was not !> required. !>
B
!> B is DOUBLE PRECISION array, dimension (LDB,NRHS) !> On entry, the matrix of right hand side vectors B. !> On exit, B is overwritten by the solution vectors X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 127 of file dgtts2.f.
subroutine SGTTS2 (integer itrans, integer n, integer nrhs, real, dimension( * ) dl, real, dimension( * ) d, real, dimension( * ) du, real, dimension( * ) du2, integer, dimension( * ) ipiv, real, dimension( ldb, * ) b, integer ldb)¶
SGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by sgttrf.
Purpose:
!> !> SGTTS2 solves one of the systems of equations !> A*X = B or A**T*X = B, !> with a tridiagonal matrix A using the LU factorization computed !> by SGTTRF. !>
Parameters
!> ITRANS is INTEGER !> Specifies the form of the system of equations. !> = 0: A * X = B (No transpose) !> = 1: A**T* X = B (Transpose) !> = 2: A**T* X = B (Conjugate transpose = Transpose) !>
N
!> N is INTEGER !> The order of the matrix A. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
DL
!> DL is REAL array, dimension (N-1) !> The (n-1) multipliers that define the matrix L from the !> LU factorization of A. !>
D
!> D is REAL array, dimension (N) !> The n diagonal elements of the upper triangular matrix U from !> the LU factorization of A. !>
DU
!> DU is REAL array, dimension (N-1) !> The (n-1) elements of the first super-diagonal of U. !>
DU2
!> DU2 is REAL array, dimension (N-2) !> The (n-2) elements of the second super-diagonal of U. !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> The pivot indices; for 1 <= i <= n, row i of the matrix was !> interchanged with row IPIV(i). IPIV(i) will always be either !> i or i+1; IPIV(i) = i indicates a row interchange was not !> required. !>
B
!> B is REAL array, dimension (LDB,NRHS) !> On entry, the matrix of right hand side vectors B. !> On exit, B is overwritten by the solution vectors X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 127 of file sgtts2.f.
subroutine ZGTTS2 (integer itrans, integer n, integer nrhs, complex*16, dimension( * ) dl, complex*16, dimension( * ) d, complex*16, dimension( * ) du, complex*16, dimension( * ) du2, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb)¶
ZGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by sgttrf.
Purpose:
!> !> ZGTTS2 solves one of the systems of equations !> A * X = B, A**T * X = B, or A**H * X = B, !> with a tridiagonal matrix A using the LU factorization computed !> by ZGTTRF. !>
Parameters
!> ITRANS is INTEGER !> Specifies the form of the system of equations. !> = 0: A * X = B (No transpose) !> = 1: A**T * X = B (Transpose) !> = 2: A**H * X = B (Conjugate transpose) !>
N
!> N is INTEGER !> The order of the matrix A. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
DL
!> DL is COMPLEX*16 array, dimension (N-1) !> The (n-1) multipliers that define the matrix L from the !> LU factorization of A. !>
D
!> D is COMPLEX*16 array, dimension (N) !> The n diagonal elements of the upper triangular matrix U from !> the LU factorization of A. !>
DU
!> DU is COMPLEX*16 array, dimension (N-1) !> The (n-1) elements of the first super-diagonal of U. !>
DU2
!> DU2 is COMPLEX*16 array, dimension (N-2) !> The (n-2) elements of the second super-diagonal of U. !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> The pivot indices; for 1 <= i <= n, row i of the matrix was !> interchanged with row IPIV(i). IPIV(i) will always be either !> i or i+1; IPIV(i) = i indicates a row interchange was not !> required. !>
B
!> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the matrix of right hand side vectors B. !> On exit, B is overwritten by the solution vectors X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 127 of file zgtts2.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
| Version 3.12.0 | LAPACK |