table of contents
| gtsv(3) | Library Functions Manual | gtsv(3) |
NAME¶
gtsv - gtsv: factor and solve
SYNOPSIS¶
Functions¶
subroutine CGTSV (n, nrhs, dl, d, du, b, ldb, info)
CGTSV computes the solution to system of linear equations A * X = B for GT
matrices subroutine DGTSV (n, nrhs, dl, d, du, b, ldb, info)
DGTSV computes the solution to system of linear equations A * X = B for GT
matrices subroutine SGTSV (n, nrhs, dl, d, du, b, ldb, info)
SGTSV computes the solution to system of linear equations A * X = B for GT
matrices subroutine ZGTSV (n, nrhs, dl, d, du, b, ldb, info)
ZGTSV computes the solution to system of linear equations A * X = B for GT
matrices
Detailed Description¶
Function Documentation¶
subroutine CGTSV (integer n, integer nrhs, complex, dimension( * ) dl, complex, dimension( * ) d, complex, dimension( * ) du, complex, dimension( ldb, * ) b, integer ldb, integer info)¶
CGTSV computes the solution to system of linear equations A * X = B for GT matrices
Purpose:
!> !> CGTSV solves the equation !> !> A*X = B, !> !> where A is an N-by-N tridiagonal matrix, by Gaussian elimination with !> partial pivoting. !> !> Note that the equation A**T *X = B may be solved by interchanging the !> order of the arguments DU and DL. !>
Parameters
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
DL
!> DL is COMPLEX array, dimension (N-1) !> On entry, DL must contain the (n-1) subdiagonal elements of !> A. !> On exit, DL is overwritten by the (n-2) elements of the !> second superdiagonal of the upper triangular matrix U from !> the LU factorization of A, in DL(1), ..., DL(n-2). !>
D
!> D is COMPLEX array, dimension (N) !> On entry, D must contain the diagonal elements of A. !> On exit, D is overwritten by the n diagonal elements of U. !>
DU
!> DU is COMPLEX array, dimension (N-1) !> On entry, DU must contain the (n-1) superdiagonal elements !> of A. !> On exit, DU is overwritten by the (n-1) elements of the first !> superdiagonal of U. !>
B
!> B is COMPLEX array, dimension (LDB,NRHS) !> On entry, the N-by-NRHS right hand side matrix B. !> On exit, if INFO = 0, the N-by-NRHS solution matrix X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, U(i,i) is exactly zero, and the solution !> has not been computed. The factorization has not been !> completed unless i = N. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 123 of file cgtsv.f.
subroutine DGTSV (integer n, integer nrhs, double precision, dimension( * ) dl, double precision, dimension( * ) d, double precision, dimension( * ) du, double precision, dimension( ldb, * ) b, integer ldb, integer info)¶
DGTSV computes the solution to system of linear equations A * X = B for GT matrices
Purpose:
!> !> DGTSV solves the equation !> !> A*X = B, !> !> where A is an n by n tridiagonal matrix, by Gaussian elimination with !> partial pivoting. !> !> Note that the equation A**T*X = B may be solved by interchanging the !> order of the arguments DU and DL. !>
Parameters
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
DL
!> DL is DOUBLE PRECISION array, dimension (N-1) !> On entry, DL must contain the (n-1) sub-diagonal elements of !> A. !> !> On exit, DL is overwritten by the (n-2) elements of the !> second super-diagonal of the upper triangular matrix U from !> the LU factorization of A, in DL(1), ..., DL(n-2). !>
D
!> D is DOUBLE PRECISION array, dimension (N) !> On entry, D must contain the diagonal elements of A. !> !> On exit, D is overwritten by the n diagonal elements of U. !>
DU
!> DU is DOUBLE PRECISION array, dimension (N-1) !> On entry, DU must contain the (n-1) super-diagonal elements !> of A. !> !> On exit, DU is overwritten by the (n-1) elements of the first !> super-diagonal of U. !>
B
!> B is DOUBLE PRECISION array, dimension (LDB,NRHS) !> On entry, the N by NRHS matrix of right hand side matrix B. !> On exit, if INFO = 0, the N by NRHS solution matrix X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, U(i,i) is exactly zero, and the solution !> has not been computed. The factorization has not been !> completed unless i = N. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 126 of file dgtsv.f.
subroutine SGTSV (integer n, integer nrhs, real, dimension( * ) dl, real, dimension( * ) d, real, dimension( * ) du, real, dimension( ldb, * ) b, integer ldb, integer info)¶
SGTSV computes the solution to system of linear equations A * X = B for GT matrices
Purpose:
!> !> SGTSV solves the equation !> !> A*X = B, !> !> where A is an n by n tridiagonal matrix, by Gaussian elimination with !> partial pivoting. !> !> Note that the equation A**T*X = B may be solved by interchanging the !> order of the arguments DU and DL. !>
Parameters
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
DL
!> DL is REAL array, dimension (N-1) !> On entry, DL must contain the (n-1) sub-diagonal elements of !> A. !> !> On exit, DL is overwritten by the (n-2) elements of the !> second super-diagonal of the upper triangular matrix U from !> the LU factorization of A, in DL(1), ..., DL(n-2). !>
D
!> D is REAL array, dimension (N) !> On entry, D must contain the diagonal elements of A. !> !> On exit, D is overwritten by the n diagonal elements of U. !>
DU
!> DU is REAL array, dimension (N-1) !> On entry, DU must contain the (n-1) super-diagonal elements !> of A. !> !> On exit, DU is overwritten by the (n-1) elements of the first !> super-diagonal of U. !>
B
!> B is REAL array, dimension (LDB,NRHS) !> On entry, the N by NRHS matrix of right hand side matrix B. !> On exit, if INFO = 0, the N by NRHS solution matrix X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, U(i,i) is exactly zero, and the solution !> has not been computed. The factorization has not been !> completed unless i = N. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 126 of file sgtsv.f.
subroutine ZGTSV (integer n, integer nrhs, complex*16, dimension( * ) dl, complex*16, dimension( * ) d, complex*16, dimension( * ) du, complex*16, dimension( ldb, * ) b, integer ldb, integer info)¶
ZGTSV computes the solution to system of linear equations A * X = B for GT matrices
Purpose:
!> !> ZGTSV solves the equation !> !> A*X = B, !> !> where A is an N-by-N tridiagonal matrix, by Gaussian elimination with !> partial pivoting. !> !> Note that the equation A**T *X = B may be solved by interchanging the !> order of the arguments DU and DL. !>
Parameters
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
DL
!> DL is COMPLEX*16 array, dimension (N-1) !> On entry, DL must contain the (n-1) subdiagonal elements of !> A. !> On exit, DL is overwritten by the (n-2) elements of the !> second superdiagonal of the upper triangular matrix U from !> the LU factorization of A, in DL(1), ..., DL(n-2). !>
D
!> D is COMPLEX*16 array, dimension (N) !> On entry, D must contain the diagonal elements of A. !> On exit, D is overwritten by the n diagonal elements of U. !>
DU
!> DU is COMPLEX*16 array, dimension (N-1) !> On entry, DU must contain the (n-1) superdiagonal elements !> of A. !> On exit, DU is overwritten by the (n-1) elements of the first !> superdiagonal of U. !>
B
!> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the N-by-NRHS right hand side matrix B. !> On exit, if INFO = 0, the N-by-NRHS solution matrix X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, U(i,i) is exactly zero, and the solution !> has not been computed. The factorization has not been !> completed unless i = N. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 123 of file zgtsv.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
| Version 3.12.0 | LAPACK |