table of contents
geql2(3) | Library Functions Manual | geql2(3) |
NAME¶
geql2 - geql2: QL factor, level 2
SYNOPSIS¶
Functions¶
subroutine CGEQL2 (m, n, a, lda, tau, work, info)
CGEQL2 computes the QL factorization of a general rectangular matrix
using an unblocked algorithm. subroutine DGEQL2 (m, n, a, lda, tau,
work, info)
DGEQL2 computes the QL factorization of a general rectangular matrix
using an unblocked algorithm. subroutine SGEQL2 (m, n, a, lda, tau,
work, info)
SGEQL2 computes the QL factorization of a general rectangular matrix
using an unblocked algorithm. subroutine ZGEQL2 (m, n, a, lda, tau,
work, info)
ZGEQL2 computes the QL factorization of a general rectangular matrix
using an unblocked algorithm.
Detailed Description¶
Function Documentation¶
subroutine CGEQL2 (integer m, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( * ) work, integer info)¶
CGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm.
Purpose:
!> !> CGEQL2 computes a QL factorization of a complex m by n matrix A: !> A = Q * L. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> On entry, the m by n matrix A. !> On exit, if m >= n, the lower triangle of the subarray !> A(m-n+1:m,1:n) contains the n by n lower triangular matrix L; !> if m <= n, the elements on and below the (n-m)-th !> superdiagonal contain the m by n lower trapezoidal matrix L; !> the remaining elements, with the array TAU, represent the !> unitary matrix Q as a product of elementary reflectors !> (see Further Details). !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
TAU
!> TAU is COMPLEX array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors (see Further !> Details). !>
WORK
!> WORK is COMPLEX array, dimension (N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(k) . . . H(2) H(1), where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**H !> !> where tau is a complex scalar, and v is a complex vector with !> v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in !> A(1:m-k+i-1,n-k+i), and tau in TAU(i). !>
Definition at line 122 of file cgeql2.f.
subroutine DGEQL2 (integer m, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( * ) work, integer info)¶
DGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm.
Purpose:
!> !> DGEQL2 computes a QL factorization of a real m by n matrix A: !> A = Q * L. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is DOUBLE PRECISION array, dimension (LDA,N) !> On entry, the m by n matrix A. !> On exit, if m >= n, the lower triangle of the subarray !> A(m-n+1:m,1:n) contains the n by n lower triangular matrix L; !> if m <= n, the elements on and below the (n-m)-th !> superdiagonal contain the m by n lower trapezoidal matrix L; !> the remaining elements, with the array TAU, represent the !> orthogonal matrix Q as a product of elementary reflectors !> (see Further Details). !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
TAU
!> TAU is DOUBLE PRECISION array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors (see Further !> Details). !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(k) . . . H(2) H(1), where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**T !> !> where tau is a real scalar, and v is a real vector with !> v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in !> A(1:m-k+i-1,n-k+i), and tau in TAU(i). !>
Definition at line 122 of file dgeql2.f.
subroutine SGEQL2 (integer m, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( * ) work, integer info)¶
SGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm.
Purpose:
!> !> SGEQL2 computes a QL factorization of a real m by n matrix A: !> A = Q * L. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is REAL array, dimension (LDA,N) !> On entry, the m by n matrix A. !> On exit, if m >= n, the lower triangle of the subarray !> A(m-n+1:m,1:n) contains the n by n lower triangular matrix L; !> if m <= n, the elements on and below the (n-m)-th !> superdiagonal contain the m by n lower trapezoidal matrix L; !> the remaining elements, with the array TAU, represent the !> orthogonal matrix Q as a product of elementary reflectors !> (see Further Details). !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
TAU
!> TAU is REAL array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors (see Further !> Details). !>
WORK
!> WORK is REAL array, dimension (N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(k) . . . H(2) H(1), where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**T !> !> where tau is a real scalar, and v is a real vector with !> v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in !> A(1:m-k+i-1,n-k+i), and tau in TAU(i). !>
Definition at line 122 of file sgeql2.f.
subroutine ZGEQL2 (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer info)¶
ZGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm.
Purpose:
!> !> ZGEQL2 computes a QL factorization of a complex m by n matrix A: !> A = Q * L. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the m by n matrix A. !> On exit, if m >= n, the lower triangle of the subarray !> A(m-n+1:m,1:n) contains the n by n lower triangular matrix L; !> if m <= n, the elements on and below the (n-m)-th !> superdiagonal contain the m by n lower trapezoidal matrix L; !> the remaining elements, with the array TAU, represent the !> unitary matrix Q as a product of elementary reflectors !> (see Further Details). !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
TAU
!> TAU is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors (see Further !> Details). !>
WORK
!> WORK is COMPLEX*16 array, dimension (N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(k) . . . H(2) H(1), where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**H !> !> where tau is a complex scalar, and v is a complex vector with !> v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in !> A(1:m-k+i-1,n-k+i), and tau in TAU(i). !>
Definition at line 122 of file zgeql2.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |