table of contents
gelqt3(3) | Library Functions Manual | gelqt3(3) |
NAME¶
gelqt3 - gelqt3: LQ factor, with T, recursive
SYNOPSIS¶
Functions¶
recursive subroutine CGELQT3 (m, n, a, lda, t, ldt, info)
CGELQT3 recursive subroutine DGELQT3 (m, n, a, lda, t, ldt,
info)
DGELQT3 recursively computes a LQ factorization of a general real or
complex matrix using the compact WY representation of Q. recursive
subroutine SGELQT3 (m, n, a, lda, t, ldt, info)
SGELQT3 recursive subroutine ZGELQT3 (m, n, a, lda, t, ldt,
info)
ZGELQT3 recursively computes a LQ factorization of a general real or
complex matrix using the compact WY representation of Q.
Detailed Description¶
Function Documentation¶
recursive subroutine CGELQT3 (integer m, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldt, * ) t, integer ldt, integer info)¶
CGELQT3
Purpose:
!> !> CGELQT3 recursively computes a LQ factorization of a complex M-by-N !> matrix A, using the compact WY representation of Q. !> !> Based on the algorithm of Elmroth and Gustavson, !> IBM J. Res. Develop. Vol 44 No. 4 July 2000. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M =< N. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> On entry, the complex M-by-N matrix A. On exit, the elements on and !> below the diagonal contain the N-by-N lower triangular matrix L; the !> elements above the diagonal are the rows of V. See below for !> further details. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
T
!> T is COMPLEX array, dimension (LDT,N) !> The N-by-N upper triangular factor of the block reflector. !> The elements on and above the diagonal contain the block !> reflector T; the elements below the diagonal are not used. !> See below for further details. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= max(1,N). !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix V stores the elementary reflectors H(i) in the i-th row !> above the diagonal. For example, if M=5 and N=3, the matrix V is !> !> V = ( 1 v1 v1 v1 v1 ) !> ( 1 v2 v2 v2 ) !> ( 1 v3 v3 v3 ) !> !> !> where the vi's represent the vectors which define H(i), which are returned !> in the matrix A. The 1's along the diagonal of V are not stored in A. The !> block reflector H is then given by !> !> H = I - V * T * V**T !> !> where V**T is the transpose of V. !> !> For details of the algorithm, see Elmroth and Gustavson (cited above). !>
Definition at line 115 of file cgelqt3.f.
recursive subroutine DGELQT3 (integer m, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldt, * ) t, integer ldt, integer info)¶
DGELQT3 recursively computes a LQ factorization of a general real or complex matrix using the compact WY representation of Q.
Purpose:
!> !> DGELQT3 recursively computes a LQ factorization of a real M-by-N !> matrix A, using the compact WY representation of Q. !> !> Based on the algorithm of Elmroth and Gustavson, !> IBM J. Res. Develop. Vol 44 No. 4 July 2000. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M =< N. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is DOUBLE PRECISION array, dimension (LDA,N) !> On entry, the real M-by-N matrix A. On exit, the elements on and !> below the diagonal contain the N-by-N lower triangular matrix L; the !> elements above the diagonal are the rows of V. See below for !> further details. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
T
!> T is DOUBLE PRECISION array, dimension (LDT,N) !> The N-by-N upper triangular factor of the block reflector. !> The elements on and above the diagonal contain the block !> reflector T; the elements below the diagonal are not used. !> See below for further details. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= max(1,N). !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix V stores the elementary reflectors H(i) in the i-th row !> above the diagonal. For example, if M=5 and N=3, the matrix V is !> !> V = ( 1 v1 v1 v1 v1 ) !> ( 1 v2 v2 v2 ) !> ( 1 v3 v3 v3 ) !> !> !> where the vi's represent the vectors which define H(i), which are returned !> in the matrix A. The 1's along the diagonal of V are not stored in A. The !> block reflector H is then given by !> !> H = I - V * T * V**T !> !> where V**T is the transpose of V. !> !> For details of the algorithm, see Elmroth and Gustavson (cited above). !>
Definition at line 130 of file dgelqt3.f.
recursive subroutine SGELQT3 (integer m, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( ldt, * ) t, integer ldt, integer info)¶
SGELQT3
Purpose:
!> !> SGELQT3 recursively computes a LQ factorization of a real M-by-N !> matrix A, using the compact WY representation of Q. !> !> Based on the algorithm of Elmroth and Gustavson, !> IBM J. Res. Develop. Vol 44 No. 4 July 2000. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M =< N. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is REAL array, dimension (LDA,N) !> On entry, the real M-by-N matrix A. On exit, the elements on and !> below the diagonal contain the N-by-N lower triangular matrix L; the !> elements above the diagonal are the rows of V. See below for !> further details. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
T
!> T is REAL array, dimension (LDT,N) !> The N-by-N upper triangular factor of the block reflector. !> The elements on and above the diagonal contain the block !> reflector T; the elements below the diagonal are not used. !> See below for further details. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= max(1,N). !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix V stores the elementary reflectors H(i) in the i-th row !> above the diagonal. For example, if M=5 and N=3, the matrix V is !> !> V = ( 1 v1 v1 v1 v1 ) !> ( 1 v2 v2 v2 ) !> ( 1 v3 v3 v3 ) !> !> !> where the vi's represent the vectors which define H(i), which are returned !> in the matrix A. The 1's along the diagonal of V are not stored in A. The !> block reflector H is then given by !> !> H = I - V * T * V**T !> !> where V**T is the transpose of V. !> !> For details of the algorithm, see Elmroth and Gustavson (cited above). !>
Definition at line 115 of file sgelqt3.f.
recursive subroutine ZGELQT3 (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldt, * ) t, integer ldt, integer info)¶
ZGELQT3 recursively computes a LQ factorization of a general real or complex matrix using the compact WY representation of Q.
Purpose:
!> !> ZGELQT3 recursively computes a LQ factorization of a complex M-by-N !> matrix A, using the compact WY representation of Q. !> !> Based on the algorithm of Elmroth and Gustavson, !> IBM J. Res. Develop. Vol 44 No. 4 July 2000. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M =< N. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the complex M-by-N matrix A. On exit, the elements on and !> below the diagonal contain the N-by-N lower triangular matrix L; the !> elements above the diagonal are the rows of V. See below for !> further details. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
T
!> T is COMPLEX*16 array, dimension (LDT,N) !> The N-by-N upper triangular factor of the block reflector. !> The elements on and above the diagonal contain the block !> reflector T; the elements below the diagonal are not used. !> See below for further details. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= max(1,N). !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix V stores the elementary reflectors H(i) in the i-th row !> above the diagonal. For example, if M=5 and N=3, the matrix V is !> !> V = ( 1 v1 v1 v1 v1 ) !> ( 1 v2 v2 v2 ) !> ( 1 v3 v3 v3 ) !> !> !> where the vi's represent the vectors which define H(i), which are returned !> in the matrix A. The 1's along the diagonal of V are not stored in A. The !> block reflector H is then given by !> !> H = I - V * T * V**T !> !> where V**T is the transpose of V. !> !> For details of the algorithm, see Elmroth and Gustavson (cited above). !>
Definition at line 130 of file zgelqt3.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |