Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dggglm.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dggglm.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dggglm.f

SYNOPSIS

Functions/Subroutines


subroutine DGGGLM (n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)
DGGGLM

Function/Subroutine Documentation

subroutine DGGGLM (integer n, integer m, integer p, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( * ) d, double precision, dimension( * ) x, double precision, dimension( * ) y, double precision, dimension( * ) work, integer lwork, integer info)

DGGGLM

Purpose:

!>
!> DGGGLM solves a general Gauss-Markov linear model (GLM) problem:
!>
!>         minimize || y ||_2   subject to   d = A*x + B*y
!>             x
!>
!> where A is an N-by-M matrix, B is an N-by-P matrix, and d is a
!> given N-vector. It is assumed that M <= N <= M+P, and
!>
!>            rank(A) = M    and    rank( A B ) = N.
!>
!> Under these assumptions, the constrained equation is always
!> consistent, and there is a unique solution x and a minimal 2-norm
!> solution y, which is obtained using a generalized QR factorization
!> of the matrices (A, B) given by
!>
!>    A = Q*(R),   B = Q*T*Z.
!>          (0)
!>
!> In particular, if matrix B is square nonsingular, then the problem
!> GLM is equivalent to the following weighted linear least squares
!> problem
!>
!>              minimize || inv(B)*(d-A*x) ||_2
!>                  x
!>
!> where inv(B) denotes the inverse of B.
!> 

Parameters

N

!>          N is INTEGER
!>          The number of rows of the matrices A and B.  N >= 0.
!> 

M

!>          M is INTEGER
!>          The number of columns of the matrix A.  0 <= M <= N.
!> 

P

!>          P is INTEGER
!>          The number of columns of the matrix B.  P >= N-M.
!> 

A

!>          A is DOUBLE PRECISION array, dimension (LDA,M)
!>          On entry, the N-by-M matrix A.
!>          On exit, the upper triangular part of the array A contains
!>          the M-by-M upper triangular matrix R.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A. LDA >= max(1,N).
!> 

B

!>          B is DOUBLE PRECISION array, dimension (LDB,P)
!>          On entry, the N-by-P matrix B.
!>          On exit, if N <= P, the upper triangle of the subarray
!>          B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
!>          if N > P, the elements on and above the (N-P)th subdiagonal
!>          contain the N-by-P upper trapezoidal matrix T.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B. LDB >= max(1,N).
!> 

D

!>          D is DOUBLE PRECISION array, dimension (N)
!>          On entry, D is the left hand side of the GLM equation.
!>          On exit, D is destroyed.
!> 

X

!>          X is DOUBLE PRECISION array, dimension (M)
!> 

Y

!>          Y is DOUBLE PRECISION array, dimension (P)
!>
!>          On exit, X and Y are the solutions of the GLM problem.
!> 

WORK

!>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 

LWORK

!>          LWORK is INTEGER
!>          The dimension of the array WORK. LWORK >= max(1,N+M+P).
!>          For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
!>          where NB is an upper bound for the optimal blocksizes for
!>          DGEQRF, SGERQF, DORMQR and SORMRQ.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit.
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!>          = 1:  the upper triangular factor R associated with A in the
!>                generalized QR factorization of the pair (A, B) is
!>                singular, so that rank(A) < M; the least squares
!>                solution could not be computed.
!>          = 2:  the bottom (N-M) by (N-M) part of the upper trapezoidal
!>                factor T associated with B in the generalized QR
!>                factorization of the pair (A, B) is singular, so that
!>                rank( A B ) < N; the least squares solution could not
!>                be computed.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 183 of file dggglm.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK