table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dbbcsd.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dbbcsd.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dbbcsd.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine DBBCSD (jobu1, jobu2, jobv1t, jobv2t, trans, m,
p, q, theta, phi, u1, ldu1, u2, ldu2, v1t, ldv1t, v2t, ldv2t, b11d, b11e,
b12d, b12e, b21d, b21e, b22d, b22e, work, lwork, info)
DBBCSD
Function/Subroutine Documentation¶
subroutine DBBCSD (character jobu1, character jobu2, character jobv1t, character jobv2t, character trans, integer m, integer p, integer q, double precision, dimension( * ) theta, double precision, dimension( * ) phi, double precision, dimension( ldu1, * ) u1, integer ldu1, double precision, dimension( ldu2, * ) u2, integer ldu2, double precision, dimension( ldv1t, * ) v1t, integer ldv1t, double precision, dimension( ldv2t, * ) v2t, integer ldv2t, double precision, dimension( * ) b11d, double precision, dimension( * ) b11e, double precision, dimension( * ) b12d, double precision, dimension( * ) b12e, double precision, dimension( * ) b21d, double precision, dimension( * ) b21e, double precision, dimension( * ) b22d, double precision, dimension( * ) b22e, double precision, dimension( * ) work, integer lwork, integer info)¶
DBBCSD
Purpose:
!> !> DBBCSD computes the CS decomposition of an orthogonal matrix in !> bidiagonal-block form, !> !> !> [ B11 | B12 0 0 ] !> [ 0 | 0 -I 0 ] !> X = [----------------] !> [ B21 | B22 0 0 ] !> [ 0 | 0 0 I ] !> !> [ C | -S 0 0 ] !> [ U1 | ] [ 0 | 0 -I 0 ] [ V1 | ]**T !> = [---------] [---------------] [---------] . !> [ | U2 ] [ S | C 0 0 ] [ | V2 ] !> [ 0 | 0 0 I ] !> !> X is M-by-M, its top-left block is P-by-Q, and Q must be no larger !> than P, M-P, or M-Q. (If Q is not the smallest index, then X must be !> transposed and/or permuted. This can be done in constant time using !> the TRANS and SIGNS options. See DORCSD for details.) !> !> The bidiagonal matrices B11, B12, B21, and B22 are represented !> implicitly by angles THETA(1:Q) and PHI(1:Q-1). !> !> The orthogonal matrices U1, U2, V1T, and V2T are input/output. !> The input matrices are pre- or post-multiplied by the appropriate !> singular vector matrices. !>
Parameters
JOBU1
!> JOBU1 is CHARACTER !> = 'Y': U1 is updated; !> otherwise: U1 is not updated. !>
JOBU2
!> JOBU2 is CHARACTER !> = 'Y': U2 is updated; !> otherwise: U2 is not updated. !>
JOBV1T
!> JOBV1T is CHARACTER !> = 'Y': V1T is updated; !> otherwise: V1T is not updated. !>
JOBV2T
!> JOBV2T is CHARACTER !> = 'Y': V2T is updated; !> otherwise: V2T is not updated. !>
TRANS
!> TRANS is CHARACTER !> = 'T': X, U1, U2, V1T, and V2T are stored in row-major !> order; !> otherwise: X, U1, U2, V1T, and V2T are stored in column- !> major order. !>
M
!> M is INTEGER !> The number of rows and columns in X, the orthogonal matrix in !> bidiagonal-block form. !>
P
!> P is INTEGER !> The number of rows in the top-left block of X. 0 <= P <= M. !>
Q
!> Q is INTEGER !> The number of columns in the top-left block of X. !> 0 <= Q <= MIN(P,M-P,M-Q). !>
THETA
!> THETA is DOUBLE PRECISION array, dimension (Q) !> On entry, the angles THETA(1),...,THETA(Q) that, along with !> PHI(1), ...,PHI(Q-1), define the matrix in bidiagonal-block !> form. On exit, the angles whose cosines and sines define the !> diagonal blocks in the CS decomposition. !>
PHI
!> PHI is DOUBLE PRECISION array, dimension (Q-1) !> The angles PHI(1),...,PHI(Q-1) that, along with THETA(1),..., !> THETA(Q), define the matrix in bidiagonal-block form. !>
U1
!> U1 is DOUBLE PRECISION array, dimension (LDU1,P) !> On entry, a P-by-P matrix. On exit, U1 is postmultiplied !> by the left singular vector matrix common to [ B11 ; 0 ] and !> [ B12 0 0 ; 0 -I 0 0 ]. !>
LDU1
!> LDU1 is INTEGER !> The leading dimension of the array U1, LDU1 >= MAX(1,P). !>
U2
!> U2 is DOUBLE PRECISION array, dimension (LDU2,M-P) !> On entry, an (M-P)-by-(M-P) matrix. On exit, U2 is !> postmultiplied by the left singular vector matrix common to !> [ B21 ; 0 ] and [ B22 0 0 ; 0 0 I ]. !>
LDU2
!> LDU2 is INTEGER !> The leading dimension of the array U2, LDU2 >= MAX(1,M-P). !>
V1T
!> V1T is DOUBLE PRECISION array, dimension (LDV1T,Q) !> On entry, a Q-by-Q matrix. On exit, V1T is premultiplied !> by the transpose of the right singular vector !> matrix common to [ B11 ; 0 ] and [ B21 ; 0 ]. !>
LDV1T
!> LDV1T is INTEGER !> The leading dimension of the array V1T, LDV1T >= MAX(1,Q). !>
V2T
!> V2T is DOUBLE PRECISION array, dimension (LDV2T,M-Q) !> On entry, an (M-Q)-by-(M-Q) matrix. On exit, V2T is !> premultiplied by the transpose of the right !> singular vector matrix common to [ B12 0 0 ; 0 -I 0 ] and !> [ B22 0 0 ; 0 0 I ]. !>
LDV2T
!> LDV2T is INTEGER !> The leading dimension of the array V2T, LDV2T >= MAX(1,M-Q). !>
B11D
!> B11D is DOUBLE PRECISION array, dimension (Q) !> When DBBCSD converges, B11D contains the cosines of THETA(1), !> ..., THETA(Q). If DBBCSD fails to converge, then B11D !> contains the diagonal of the partially reduced top-left !> block. !>
B11E
!> B11E is DOUBLE PRECISION array, dimension (Q-1) !> When DBBCSD converges, B11E contains zeros. If DBBCSD fails !> to converge, then B11E contains the superdiagonal of the !> partially reduced top-left block. !>
B12D
!> B12D is DOUBLE PRECISION array, dimension (Q) !> When DBBCSD converges, B12D contains the negative sines of !> THETA(1), ..., THETA(Q). If DBBCSD fails to converge, then !> B12D contains the diagonal of the partially reduced top-right !> block. !>
B12E
!> B12E is DOUBLE PRECISION array, dimension (Q-1) !> When DBBCSD converges, B12E contains zeros. If DBBCSD fails !> to converge, then B12E contains the subdiagonal of the !> partially reduced top-right block. !>
B21D
!> B21D is DOUBLE PRECISION array, dimension (Q) !> When DBBCSD converges, B21D contains the negative sines of !> THETA(1), ..., THETA(Q). If DBBCSD fails to converge, then !> B21D contains the diagonal of the partially reduced bottom-left !> block. !>
B21E
!> B21E is DOUBLE PRECISION array, dimension (Q-1) !> When DBBCSD converges, B21E contains zeros. If DBBCSD fails !> to converge, then B21E contains the subdiagonal of the !> partially reduced bottom-left block. !>
B22D
!> B22D is DOUBLE PRECISION array, dimension (Q) !> When DBBCSD converges, B22D contains the negative sines of !> THETA(1), ..., THETA(Q). If DBBCSD fails to converge, then !> B22D contains the diagonal of the partially reduced bottom-right !> block. !>
B22E
!> B22E is DOUBLE PRECISION array, dimension (Q-1) !> When DBBCSD converges, B22E contains zeros. If DBBCSD fails !> to converge, then B22E contains the subdiagonal of the !> partially reduced bottom-right block. !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= MAX(1,8*Q). !> !> If LWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal size of the WORK array, !> returns this value as the first entry of the work array, and !> no error message related to LWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: if DBBCSD did not converge, INFO specifies the number !> of nonzero entries in PHI, and B11D, B11E, etc., !> contain the partially reduced matrix. !>
Internal Parameters:
!> TOLMUL DOUBLE PRECISION, default = MAX(10,MIN(100,EPS**(-1/8))) !> TOLMUL controls the convergence criterion of the QR loop. !> Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they !> are within TOLMUL*EPS of either bound. !>
References:
[1] Brian D. Sutton. Computing the complete CS
decomposition. Numer. Algorithms, 50(1):33-65, 2009.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 328 of file dbbcsd.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |