table of contents
        
      
      
    | std::ldexp,std::ldexpf,std::ldexpl(3) | C++ Standard Libary | std::ldexp,std::ldexpf,std::ldexpl(3) | 
NAME¶
std::ldexp,std::ldexpf,std::ldexpl - std::ldexp,std::ldexpf,std::ldexpl
Synopsis¶
 Defined in header <cmath>
  
   float ldexp ( float x, int exp ); (1) (constexpr since C++23)
  
   float ldexpf( float x, int exp ); (2) (since C++11)
  
   (constexpr since C++23)
  
   double ldexp ( double x, int exp ); (3) (constexpr since C++23)
  
   long double ldexp ( long double x, int exp ); (4) (constexpr since
    C++23)
  
   long double ldexpl( long double x, int exp ); (5) (since C++11)
  
   (constexpr since C++23)
  
   double ldexp ( IntegralType x, int exp ); (6) (since C++11)
  
   (constexpr since C++23)
  
   1-5) Multiplies a floating point value x by the number 2 raised to the exp
    power.
  
   6) A set of overloads or a function template accepting an argument of any
    integral
  
   type. Equivalent to (3) (the argument is cast to double).
Parameters¶
 x - floating point value
  
   exp - integer value
Return value¶
 If no errors occur, x multiplied by 2 to the power of exp
    (x×2exp
  
   ) is returned.
  
   If a range error due to overflow occurs, ±HUGE_VAL, ±HUGE_VALF,
    or ±HUGE_VALL is
  
   returned.
  
   If a range error due to underflow occurs, the correct result (after rounding)
    is
  
   returned.
Error handling¶
Errors are reported as specified in math_errhandling.
  
   If the implementation supports IEEE floating-point arithmetic (IEC
  60559),
  
   * Unless a range error occurs, FE_INEXACT is never raised (the result is
    exact)
  
   * Unless a range error occurs, the current rounding mode is ignored
  
   * If x is ±0, it is returned, unmodified
  
   * If x is ±∞, it is returned, unmodified
  
   * If exp is 0, then x is returned, unmodified
  
   * If x is NaN, NaN is returned
Notes¶
On binary systems (where FLT_RADIX is 2), std::ldexp is equivalent to std::scalbn.
  
   The function std::ldexp ("load exponent"), together with its dual,
    std::frexp, can
  
   be used to manipulate the representation of a floating-point number without
    direct
  
   bit manipulations.
  
   On many implementations, std::ldexp is less efficient than multiplication or
  
   division by a power of two using arithmetic operators.
Example¶
// Run this code
  
   #include <iostream>
  
   #include <cmath>
  
   #include <cerrno>
  
   #include <cstring>
  
   #include <cfenv>
  
   // #pragma STDC FENV_ACCESS ON
  
   int main()
  
   {
  
   std::cout << "ldexp(7, -4) = " << std::ldexp(7, -4)
    << '\n'
  
   << "ldexp(1, -1074) = " << std::ldexp(1, -1074)
  
   << " (minimum positive subnormal double)\n"
  
   << "ldexp(nextafter(1,0), 1024) = "
  
   << std::ldexp(std::nextafter(1,0), 1024)
  
   << " (largest finite double)\n";
  
   // special values
  
   std::cout << "ldexp(-0, 10) = " << std::ldexp(-0.0, 10)
    << '\n'
  
   << "ldexp(-Inf, -1) = " << std::ldexp(-INFINITY, -1)
    << '\n';
  
   // error handling
  
   errno = 0;
  
   std::feclearexcept(FE_ALL_EXCEPT);
  
   std::cout << "ldexp(1, 1024) = " << std::ldexp(1, 1024)
    << '\n';
  
   if (errno == ERANGE)
  
   std::cout << " errno == ERANGE: " <<
    std::strerror(errno) << '\n';
  
   if (std::fetestexcept(FE_OVERFLOW))
  
   std::cout << " FE_OVERFLOW raised\n";
  
   }
Output:¶
 ldexp(7, -4) = 0.4375
  
   ldexp(1, -1074) = 4.94066e-324 (minimum positive subnormal double)
  
   ldexp(nextafter(1,0), 1024) = 1.79769e+308 (largest finite double)
  
   ldexp(-0, 10) = -0
  
   ldexp(-Inf, -1) = -inf
  
   ldexp(1, 1024) = inf
  
   errno == ERANGE: Numerical result out of range
  
   FE_OVERFLOW raised
See also¶
 frexp
  
   frexpf decomposes a number into significand and a power of 2
  
   frexpl (function)
  
   (C++11)
  
   (C++11)
  
   scalbn
  
   scalbnf
  
   scalbnl
  
   scalbln
  
   scalblnf
  
   scalblnl multiplies a number by FLT_RADIX raised to a power
  
   (C++11) (function)
  
   (C++11)
  
   (C++11)
  
   (C++11)
  
   (C++11)
  
   (C++11)
| 2022.07.31 | http://cppreference.com |