table of contents
        
      
      
    | std::lcm(3) | C++ Standard Libary | std::lcm(3) | 
NAME¶
std::lcm - std::lcm
Synopsis¶
 Defined in header <numeric>
  
   template< class M, class N > (since C++17)
  
   constexpr std::common_type_t<M, N> lcm( M m, N n );
  
   Computes the least common multiple of the integers m and n.
Parameters¶
m, n - integer values
Return value¶
 If either m or n is zero, returns zero. Otherwise, returns the
    least common multiple
  
   of |m| and |n|.
  
   Remarks
  
   If either M or N is not an integer type, or if either is (possibly
    cv-qualified)
  
   bool, the program is ill-formed.
  
   The behavior is undefined if |m|, |n|, or the least common multiple of |m|
    and |n|
  
   is not representable as a value of type std::common_type_t<M, N>.
Exceptions¶
Throws no exceptions.
Notes¶
Feature-test macro: __cpp_lib_gcd_lcm
Example¶
// Run this code
  
   #include <numeric>
  
   #include <iostream>
  
   #define OUT(...) std::cout << #__VA_ARGS__ << " = "
    << __VA_ARGS__ << '\n'
  
   constexpr auto lcm(auto x, auto y) {
  
   return std::lcm(x,y);
  
   }
  
   constexpr auto lcm(auto head, auto...tail) {
  
   return std::lcm(head, lcm(tail...));
  
   }
  
   int main() {
  
   constexpr int p {2 * 2 * 3};
  
   constexpr int q {2 * 3 * 3};
  
   static_assert(2 * 2 * 3 * 3 == std::lcm(p, q));
  
   static_assert(225 == std::lcm(45, 75));
  
   OUT(lcm(2*3, 3*4, 4*5));
  
   OUT(lcm(2*3*4, 3*4*5, 4*5*6));
  
   OUT(lcm(2*3*4, 3*4*5, 4*5*6, 5*6*7));
  
   }
Output:¶
 lcm(2*3, 3*4, 4*5) = 60
  
   lcm(2*3*4, 3*4*5, 4*5*6) = 120
  
   lcm(2*3*4, 3*4*5, 4*5*6, 5*6*7) = 840
See also¶
 gcd constexpr function template returning the greatest common
    divisor of two
  
   (C++17) integers
  
   (function template)
| 2022.07.31 | http://cppreference.com |