table of contents
        
      
      
    | std::ellint_2,std::ellint_2f,std::ellint_2l(3) | C++ Standard Libary | std::ellint_2,std::ellint_2f,std::ellint_2l(3) | 
NAME¶
std::ellint_2,std::ellint_2f,std::ellint_2l - std::ellint_2,std::ellint_2f,std::ellint_2l
Synopsis¶
 Defined in header <cmath>
  
   double ellint_2( double k, double φ );
  
   float ellint_2f( float k, float φ ); (1) (since
  C++17)
  
   long double ellint_2l( long double k, long double φ );
  
   Promoted ellint_2( Arithmetic k, Arithmetic φ ); (2) (since
    C++17)
  
   1) Computes the incomplete elliptic integral of the second kind of k and
    φ.
  
   2) A set of overloads or a function template for all combinations of
    arguments of
  
   arithmetic type not covered by (1). If any argument has integral type,
    it is cast to
  
   double. If any argument is long double, then the return type Promoted is also
    long
  
   double, otherwise the return type is always double.
Parameters¶
 k - elliptic modulus or eccentricity (a value of a floating-point
    or integral type)
  
   φ - Jacobi amplitude (a value of floating-point or integral type,
    measured in
  
   radians)
Return value¶
 If no errors occur, value of the incomplete elliptic integral of
    the second kind of
  
   k and φ, that is ∫φ
  
   0
  
   √
  
   1-k2
  
   sin2
  
   θdθ, is returned.
Error handling¶
Errors may be reported as specified in math_errhandling:
  
   * If the argument is NaN, NaN is returned and domain error is not reported
  
   * If |k|>1, a domain error may occur
Notes¶
 Implementations that do not support C++17, but support ISO
    29124:2010, provide this
  
   function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a
    value
  
   at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
    before
  
   including any standard library headers.
  
   Implementations that do not support ISO 29124:2010 but support TR 19768:2007
    (TR1),
  
   provide this function in the header tr1/cmath and namespace std::tr1.
  
   An implementation of this function is also available in boost.math
Example¶
// Run this code
  
   #include <cmath>
  
   #include <iostream>
  
   int main()
  
   {
  
   double hpi = std::acos(-1)/2;
  
   std::cout << "E(0,π/2) = " << std::ellint_2(0,
    hpi) << '\n'
  
   << "E(0,-π/2) = " << std::ellint_2(0, -hpi)
    << '\n'
  
   << "π/2 = " << hpi << '\n'
  
   << "E(0.7,0) = " << std::ellint_2(0.7, 0) << '\n'
  
   << "E(1,π/2) = " << std::ellint_2(1, hpi)
    << '\n';
  
   }
Output:¶
 E(0,π/2) = 1.5708
  
   E(0,-π/2) = -1.5708
  
   π/2 = 1.5708
  
   E(0.7,0) = 0
  
   E(1,π/2) = 1
See also¶
 comp_ellint_2
  
   comp_ellint_2f
  
   comp_ellint_2l (complete) elliptic integral of the second kind
  
   (C++17) (function)
  
   (C++17)
  
   (C++17)
External links¶
 Weisstein, Eric W. "Elliptic Integral of the Second
    Kind." From MathWorld — A
  
   Wolfram Web Resource.
| 2022.07.31 | http://cppreference.com |