table of contents
        
      
      
    | std::cyl_bessel_j,std::cyl_bessel_jf,std::cyl_bessel_jl(3) | C++ Standard Libary | std::cyl_bessel_j,std::cyl_bessel_jf,std::cyl_bessel_jl(3) | 
NAME¶
std::cyl_bessel_j,std::cyl_bessel_jf,std::cyl_bessel_jl - std::cyl_bessel_j,std::cyl_bessel_jf,std::cyl_bessel_jl
Synopsis¶
 Defined in header <cmath>
  
   double cyl_bessel_j( double ν, double x );
  
   float cyl_bessel_jf( float ν, float x ); (1) (since
    C++17)
  
   long double cyl_bessel_jl( long double ν, long double x );
  
   Promoted cyl_bessel_j( Arithmetic ν, Arithmetic x ); (2)
    (since C++17)
  
   1) Computes the cylindrical Bessel function of the first kind of ν and
    x.
  
   2) A set of overloads or a function template for all combinations of
    arguments of
  
   arithmetic type not covered by (1). If any argument has integral type,
    it is cast to
  
   double. If any argument is long double, then the return type Promoted is also
    long
  
   double, otherwise the return type is always double.
Parameters¶
 ν - the order of the function
  
   x - the argument of the function
Return value¶
 If no errors occur, value of the cylindrical Bessel function of
    the first kind of ν
  
   and x, that is J
  
   ν(x) = Σ∞
  
   k=0
  
   (-1)k
  
   (x/2)ν+2k
  
   k!Γ(ν+k+1)
  
   (for x≥0), is returned.
Error handling¶
Errors may be reported as specified in math_errhandling:
  
   * If the argument is NaN, NaN is returned and domain error is not reported
  
   * If ν>=128, the behavior is implementation-defined
Notes¶
 Implementations that do not support C++17, but support ISO
    29124:2010, provide this
  
   function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a
    value
  
   at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
    before
  
   including any standard library headers.
  
   Implementations that do not support ISO 29124:2010 but support TR 19768:2007
    (TR1),
  
   provide this function in the header tr1/cmath and namespace std::tr1.
  
   An implementation of this function is also available in boost.math
Example¶
// Run this code
  
   #include <cmath>
  
   #include <iostream>
  
   int main()
  
   {
  
   // spot check for ν == 0
  
   double x = 1.2345;
  
   std::cout << "J_0(" << x << ") = "
    << std::cyl_bessel_j(0, x) << '\n';
  
   // series expansion for J_0
  
   double fct = 1;
  
   double sum = 0;
  
   for(int k = 0; k < 6; fct*=++k) {
  
   sum += std::pow(-1, k)*std::pow((x/2),2*k) / std::pow(fct,2);
  
   std::cout << "sum = " << sum << '\n';
  
   }
  
   }
Output:¶
 J_0(1.2345) = 0.653792
  
   sum = 1
  
   sum = 0.619002
  
   sum = 0.655292
  
   sum = 0.653756
  
   sum = 0.653793
  
   sum = 0.653792
See also¶
 cyl_bessel_i
  
   cyl_bessel_if
  
   cyl_bessel_il regular modified cylindrical Bessel functions
  
   (C++17) (function)
  
   (C++17)
  
   (C++17)
External links¶
 Weisstein, Eric W. "Bessel Function of the First Kind."
    From MathWorld — A Wolfram
  
   Web Resource.
| 2022.07.31 | http://cppreference.com |