| std::complex(3) | C++ Standard Libary | std::complex(3) | 
NAME¶
std::complex - std::complex
Synopsis¶
 Defined in header <complex>
  
   template< class T > (1)
  
   class complex;
  
   template<> class complex<float>; (2)
  
   template<> class complex<double>; (3)
  
   template<> class complex<long double>; (4)
  
   The specializations std::complex<float>, std::complex<double>,
    and std::complex<long
  
   double> are LiteralTypes for representing and manipulating complex
    numbers.
Template parameters¶
 the type of the real and imaginary components. The behavior is
    unspecified (and
  
   T - may fail to compile) if T is not float, double, or long double and
    undefined if
  
   T is not NumericType.
Member types¶
 Member type Definition
  
   value_type T
Member functions¶
 constructor constructs a complex number
  
   (public member function)
  
   operator= assigns the contents
  
   (public member function)
  
   real accesses the real part of the complex number
  
   (public member function)
  
   imag accesses the imaginary part of the complex number
  
   (public member function)
  
   operator+=
  
   operator-= compound assignment of two complex numbers or a complex and a
    scalar
  
   operator*= (public member function)
  
   operator/=
Non-member functions¶
 operator+ applies unary operators to complex numbers
  
   operator- (function template)
  
   operator+ performs complex number arithmetics on two complex values or a
  
   operator- complex and a scalar
  
   operator* (function template)
  
   operator/
  
   operator== compares two complex numbers or a complex and a scalar
  
   operator!= (function template)
  
   (removed in C++20)
  
   operator<< serializes and deserializes a complex number
  
   operator>> (function template)
  
   real returns the real component
  
   (function template)
  
   imag returns the imaginary component
  
   (function template)
  
   abs(std::complex) returns the magnitude of a complex number
  
   (function template)
  
   arg returns the phase angle
  
   (function template)
  
   norm returns the squared magnitude
  
   (function template)
  
   conj returns the complex conjugate
  
   (function template)
  
   proj returns the projection onto the Riemann sphere
  
   (C++11) (function template)
  
   polar constructs a complex number from magnitude and phase angle
  
   (function template)
Exponential functions¶
 exp(std::complex) complex base e exponential
  
   (function template)
  
   complex natural logarithm with the branch cuts along the
  
   log(std::complex) negative real axis
  
   (function template)
  
   complex common logarithm with the branch cuts along the negative
  
   log10(std::complex) real axis
  
   (function template)
Power functions¶
 pow(std::complex) complex power, one or both arguments may be a
    complex number
  
   (function template)
  
   sqrt(std::complex) complex square root in the range of the right half-plane
  
   (function template)
Trigonometric functions¶
 sin(std::complex) computes sine of a complex number
    (\({\small\sin{z} }\)sin(z))
  
   (function template)
  
   cos(std::complex) computes cosine of a complex number (\({\small\cos{z}
    }\)cos(z))
  
   (function template)
  
   computes tangent of a complex number (\({\small\tan{z}
  
   tan(std::complex) }\)tan(z))
  
   (function template)
  
   asin(std::complex) computes arc sine of a complex number (\({\small\arcsin{z}
  
   (C++11) }\)arcsin(z))
  
   (function template)
  
   acos(std::complex) computes arc cosine of a complex number
    (\({\small\arccos{z}
  
   (C++11) }\)arccos(z))
  
   (function template)
  
   atan(std::complex) computes arc tangent of a complex number
    (\({\small\arctan{z}
  
   (C++11) }\)arctan(z))
  
   (function template)
Hyperbolic functions¶
 computes hyperbolic sine of a complex number (\({\small\sinh{z}
  
   sinh(std::complex) }\)sinh(z))
  
   (function template)
  
   computes hyperbolic cosine of a complex number
  
   cosh(std::complex) (\({\small\cosh{z} }\)cosh(z))
  
   (function template)
  
   computes hyperbolic tangent of a complex number
  
   tanh(std::complex) (\({\small\tanh{z} }\)tanh(z))
  
   (function template)
  
   asinh(std::complex) computes area hyperbolic sine of a complex number
  
   (C++11) (\({\small\operatorname{arsinh}{z} }\)arsinh(z))
  
   (function template)
  
   acosh(std::complex) computes area hyperbolic cosine of a complex number
  
   (C++11) (\({\small\operatorname{arcosh}{z} }\)arcosh(z))
  
   (function template)
  
   atanh(std::complex) computes area hyperbolic tangent of a complex number
  
   (C++11) (\({\small\operatorname{artanh}{z} }\)artanh(z))
  
   (function template)
  
   Array-oriented access
  
   For any object z of type complex<T>,
    reinterpret_cast<T(&)[2]>(z)[0]
  
   is the real part of z and reinterpret_cast<T(&)[2]>(z)[1] is the
  
   imaginary part of z.
  
   For any pointer to an element of an array of complex<T> named p and
  
   any valid array index i, reinterpret_cast<T*>(p)[2*i] is the real part
  
   of the complex number p[i], and reinterpret_cast<T*>(p)[2*i + 1] is
    (since C++11)
  
   the imaginary part of the complex number p[i]
  
   The intent of this requirement is to preserve binary compatibility
  
   between the C++ library complex number types and the C language
  
   complex number types (and arrays thereof), which have an identical
  
   object representation requirement.
Implementation notes¶
 In order to satisfy the requirements of array-oriented access, an
  
   implementation is constrained to store the real and imaginary
  
   components of a std::complex specialization in separate and adjacent
  
   memory locations. Possible declarations for its non-static data
  
   members include:
  
   * an array of type value_type[2], with the first element holding the
  
   real component and the second element holding the imaginary
  
   component (e.g. Microsoft Visual Studio)
  
   * a single member of type value_type _Complex (encapsulating the
  
   corresponding C language complex number type) (e.g. GNU
  
   libstdc++); (since C++11)
  
   * two members of type value_type, with the same member access,
  
   holding the real and the imaginary components respectively (e.g.
  
   LLVM libc++).
  
   An implementation cannot declare additional non-static data members
  
   that would occupy storage disjoint from the real and imaginary
  
   components, and must ensure that the class template specialization
  
   does not contain any padding. The implementation must also ensure that
  
   optimizations to array access account for the possibility that a
  
   pointer to value_type may be aliasing a std::complex specialization or
  
   array thereof.
Literals¶
 Defined in inline namespace std::literals::complex_literals
  
   operator""if
  
   operator""i A std::complex literal representing pure imaginary
    number
  
   operator""il (function)
  
   (C++14)
Example¶
// Run this code
  
   #include <iostream>
  
   #include <iomanip>
  
   #include <complex>
  
   #include <cmath>
  
   int main()
  
   {
  
   using namespace std::complex_literals;
  
   std::cout << std::fixed << std::setprecision(1);
  
   std::complex<double> z1 = 1i * 1i; // imaginary unit squared
  
   std::cout << "i * i = " << z1 << '\n';
  
   std::complex<double> z2 = std::pow(1i, 2); // imaginary unit squared
  
   std::cout << "pow(i, 2) = " << z2 << '\n';
  
   const double PI = std::acos(-1); // or std::numbers::pi in C++20
  
   std::complex<double> z3 = std::exp(1i * PI); // Euler's formula
  
   std::cout << "exp(i * pi) = " << z3 << '\n';
  
   std::complex<double> z4 = 1. + 2i, z5 = 1. - 2i; // conjugates
  
   std::cout << "(1+2i)*(1-2i) = " << z4*z5 << '\n';
  
   }
Output:¶
 i * i = (-1.0,0.0)
  
   pow(i, 2) = (-1.0,0.0)
  
   exp(i * pi) = (-1.0,0.0)
  
   (1+2i)*(1-2i) = (5.0,0.0)
See also¶
| 2022.07.31 | http://cppreference.com |