table of contents
        
      
      
    | std::comp_ellint_2,std::comp_ellint_2f,std::comp_ellint_2l(3) | C++ Standard Libary | std::comp_ellint_2,std::comp_ellint_2f,std::comp_ellint_2l(3) | 
NAME¶
std::comp_ellint_2,std::comp_ellint_2f,std::comp_ellint_2l - std::comp_ellint_2,std::comp_ellint_2f,std::comp_ellint_2l
Synopsis¶
 Defined in header <cmath>
  
   double comp_ellint_2( double k);
  
   float comp_ellint_2( float k );
  
   long double comp_ellint_2( long double k ); (1) (since C++17)
  
   float comp_ellint_2f( float k );
  
   long double comp_ellint_2l( long double k );
  
   double comp_ellint_2( IntegralType k ); (2) (since C++17)
  
   1) Computes the complete elliptic integral of the second kind of k.
  
   2) A set of overloads or a function template accepting an argument of any
    integral
  
   type. Equivalent to (1) after casting the argument to double.
Parameters¶
k - elliptic modulus or eccentricity (a value of a floating-point or integral type)
Return value¶
 If no errors occur, value of the complete elliptic integral of
    the second kind of k,
  
   that is ellint_2(k,π/2), is returned.
Error handling¶
Errors may be reported as specified in math_errhandling
  
   * If the argument is NaN, NaN is returned and domain error is not reported
  
   * If |k|>1, a domain error may occur
Notes¶
 Implementations that do not support C++17, but support ISO
    29124:2010, provide this
  
   function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a
    value
  
   at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
    before
  
   including any standard library headers.
  
   Implementations that do not support ISO 29124:2010 but support TR 19768:2007
    (TR1),
  
   provide this function in the header tr1/cmath and namespace std::tr1.
  
   An implementation of this function is also available in boost.math
  
   The perimeter of an ellipse with eccentricity k and semimajor axis a equals
    4aE(k),
  
   where E is std::comp_ellint_2. When eccentricity equals 0, the ellipse
    degenerates
  
   to a circle with radius a and the perimeter equals 2πa, so E(0)
    = π/2. When
  
   eccentricity equals 1, the ellipse degenerates to a line of length 2a, whose
  
   perimeter is 4a, so E(1) = 1
Example¶
// Run this code
  
   #include <cmath>
  
   #include <iostream>
  
   int main()
  
   {
  
   double hpi = std::acos(-1)/2;
  
   std::cout << "E(0) = " << std::comp_ellint_2(0)
    << '\n'
  
   << "π/2 = " << hpi << '\n'
  
   << "E(1) = " << std::comp_ellint_2(1) << '\n'
  
   << "E(1, π/2) = " << std::ellint_2(1, hpi)
    << '\n';
  
   }
Output:¶
 E(0) = 1.5708
  
   π/2 = 1.5708
  
   E(1) = 1
  
   E(1, π/2) = 1
See also¶
 ellint_2
  
   ellint_2f
  
   ellint_2l (incomplete) elliptic integral of the second kind
  
   (C++17) (function)
  
   (C++17)
  
   (C++17)
External links¶
 Weisstein, Eric W. "Complete Elliptic Integral of the Second
    Kind." From MathWorld
  
   — A Wolfram Web Resource.
| 2022.07.31 | http://cppreference.com |