table of contents
        
      
      
    | std::assoc_laguerre,std::assoc_laguerref,std::assoc_laguerrel(3) | C++ Standard Libary | std::assoc_laguerre,std::assoc_laguerref,std::assoc_laguerrel(3) | 
NAME¶
std::assoc_laguerre,std::assoc_laguerref,std::assoc_laguerrel - std::assoc_laguerre,std::assoc_laguerref,std::assoc_laguerrel
Synopsis¶
 Defined in header <cmath>
  
   double assoc_laguerre( unsigned int n, unsigned int m, double x );
  
   float assoc_laguerre( unsigned int n, unsigned int m, float x );
  
   long double assoc_laguerre( unsigned int n, unsigned int m, long
  
   double x ); (1) (since C++17)
  
   float assoc_laguerref( unsigned int n, unsigned int m, float x );
  
   long double assoc_laguerrel( unsigned int n, unsigned int m, long
  
   double x );
  
   double assoc_laguerre( unsigned int n, unsigned int m, (2) (since
    C++17)
  
   IntegralType x );
  
   1) Computes the associated Laguerre polynomials of the degree n, order m, and
  
   argument x
  
   2) A set of overloads or a function template accepting an argument of any
    integral
  
   type. Equivalent to (1) after casting the argument to double.
Parameters¶
 n - the degree of the polymonial, a value of unsigned integer
    type
  
   m - the order of the polynomial, a value of unsigned integer type
  
   x - the argument, a value of a floating-point or integral type
Return value¶
 If no errors occur, value of the associated Laguerre polynomial
    of x, that is
  
   \((-1)^m \: \frac{ \mathsf{d} ^ m}{ \mathsf{d}x ^ m} \,
    \mathsf{L}_{n+m}(x)\)(-1)m
  
   dm
  
   dxm
  
   L
  
   n+m(x), is returned (where \(\mathsf{L}_{n+m}(x)\)L
  
   n+m(x) is the unassociated Laguerre polynomial, std::laguerre(n+m, x)).
Error handling¶
Errors may be reported as specified in math_errhandling
  
   * If the argument is NaN, NaN is returned and domain error is not reported
  
   * If x is negative, a domain error may occur
  
   * If n or m is greater or equal to 128, the behavior is
    implementation-defined.
Notes¶
 Implementations that do not support C++17, but support ISO
    29124:2010, provide this
  
   function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a
    value
  
   at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
    before
  
   including any standard library headers.
  
   Implementations that do not support ISO 29124:2010 but support TR 19768:2007
    (TR1),
  
   provide this function in the header tr1/cmath and namespace std::tr1.
  
   An implementation of this function is also available in boost.math
  
   The associated Laguerre polynomials are the polynomial solutions of the
    equation
  
   \(x\ddot{y} + (m+1-x)\dot{y} + ny = 0\)xy,,
  
   +(m+1-x)y,
  
   +ny = 0
  
   The first few are:
  
   * assoc_laguerre(0, m, x) = 1
  
   * assoc_laguerre(1, m, x) = -x + m + 1
  
   * assoc_laguerre(2, m, x) =
  
   1
  
   2
  
   [x2
  
   -2(m+2)x+(m+1)(m+2)]
  
   * assoc_laguerre(3, m, x) =
  
   1
  
   6
  
   [-x3
  
   -3(m+3)x2
  
   -3(m+2)(m+3)x+(m+1)(m+2)(m+3)]
Example¶
// Run this code
  
   #include <cmath>
  
   #include <iostream>
  
   double L1(unsigned m, double x) { return -x + m + 1; }
  
   double L2(unsigned m, double x) { return 0.5*(x*x-2*(m+2)*x+(m+1)*(m+2)); }
  
   int main()
  
   {
  
   // spot-checks
  
   std::cout << std::assoc_laguerre(1, 10, 0.5) << '=' <<
    L1(10, 0.5) << '\n'
  
   << std::assoc_laguerre(2, 10, 0.5) << '=' << L2(10, 0.5)
    << '\n';
  
   }
Output:¶
 10.5=10.5
  
   60.125=60.125
See also¶
 laguerre
  
   laguerref
  
   laguerrel Laguerre polynomials
  
   (C++17) (function)
  
   (C++17)
  
   (C++17)
External links¶
 Weisstein, Eric W. "Associated Laguerre Polynomial."
    From MathWorld — A Wolfram
  
   Web Resource.
| 2022.07.31 | http://cppreference.com |