table of contents
        
      
      
    - Tumbleweed 2024.07.05-1.3
 - Leap-16.0
 - Leap-15.6
 
| std::sph_neumann,std::sph_neumannf,std::sph_neumannl(3) | C++ Standard Libary | std::sph_neumann,std::sph_neumannf,std::sph_neumannl(3) | 
NAME¶
std::sph_neumann,std::sph_neumannf,std::sph_neumannl - std::sph_neumann,std::sph_neumannf,std::sph_neumannl
Synopsis¶
 Defined in header <cmath>
  
   float sph_neumann ( unsigned n, float x );
  
   (since C++17)
  
   double sph_neumann ( unsigned n, double x ); (until C++23)
  
   long double sph_neumann ( unsigned n, long double x );
  
   /* floating-point-type */ sph_neumann( unsigned n,
  
   /* floating-point-type (1) (since C++23)
  
   */ x );
  
   float sph_neumannf( unsigned n, float x ); (2) (since C++17)
  
   long double sph_neumannl( unsigned n, long double x ); (3) (since
    C++17)
  
   Additional overloads
  
   Defined in header <cmath>
  
   template< class Integer > (A) (since C++17)
  
   double sph_neumann ( unsigned n, Integer x );
  
   1-3) Computes the spherical Bessel function of the second kind, also known as
    the
  
   spherical Neumann function, of n and x.
  
   The library provides overloads of std::sph_neumann for all cv-unqualified
  
   floating-point types as the type of the parameter x.
  
   (since C++23)
  
   A) Additional overloads are provided for all integer types, which are treated
    as
  
   double.
Parameters¶
 n - the order of the function
  
   x - the argument of the function
Return value¶
 If no errors occur, returns the value of the spherical Bessel
    function of the second
  
   kind (spherical Neumann function) of n and x, that is n
  
   n(x) = (π/2x)1/2
  
   N
  
   n+1/2(x) where N
  
   n(x) is std::cyl_neumann(n, x) and x≥0.
Error handling¶
Errors may be reported as specified in math_errhandling
  
   * If the argument is NaN, NaN is returned and domain error is not reported
  
   * If n≥128, the behavior is implementation-defined
Notes¶
 Implementations that do not support C++17, but support ISO
    29124:2010, provide this
  
   function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a
    value
  
   at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
    before
  
   including any standard library headers.
  
   Implementations that do not support ISO 29124:2010 but support TR 19768:2007
    (TR1),
  
   provide this function in the header tr1/cmath and namespace std::tr1.
  
   An implementation of this function is also available in boost.math.
  
   The additional overloads are not required to be provided exactly as (A). They
    only
  
   need to be sufficient to ensure that for their argument num of integer type,
  
   std::sph_neumann(int_num, num) has the same effect as
    std::sph_neumann(int_num,
  
   static_cast<double>(num)).
Example¶
// Run this code
  
   #include <cmath>
  
   #include <iostream>
  
   int main()
  
   {
  
   // spot check for n == 1
  
   double x = 1.2345;
  
   std::cout << "n_1(" << x << ") = "
    << std::sph_neumann(1, x) << '\n';
  
   // exact solution for n_1
  
   std::cout << "-cos(x)/x² - sin(x)/x = "
  
   << -std::cos(x) / (x * x) - std::sin(x) / x << '\n';
  
   }
Output:¶
 n_1(1.2345) = -0.981201
  
   -cos(x)/x² - sin(x)/x = -0.981201
See also¶
 cyl_neumann
  
   cyl_neumannf
  
   cyl_neumannl cylindrical Neumann functions
  
   (C++17) (function)
  
   (C++17)
  
   (C++17)
  
   sph_bessel
  
   sph_besself
  
   sph_bessell spherical Bessel functions (of the first kind)
  
   (C++17) (function)
  
   (C++17)
  
   (C++17)
External links¶
 Weisstein, Eric W. "Spherical Bessel Function of the Second
    Kind." From MathWorld —
  
   A Wolfram Web Resource.
| 2024.06.10 | http://cppreference.com |