- Tumbleweed 2024.07.05-1.3
 - Leap-16.0
 - Leap-15.6
 
| std::ratio_subtract(3) | C++ Standard Libary | std::ratio_subtract(3) | 
NAME¶
std::ratio_subtract - std::ratio_subtract
Synopsis¶
 Defined in header <ratio>
  
   template< class R1, class R2 > (since C++11)
  
   using ratio_subtract = /* see below */;
  
   The alias template std::ratio_subtract denotes the result of subtracting two
    exact
  
   rational fractions represented by the std::ratio specializations R1 and
  R2.
  
   The result is a std::ratio specialization std::ratio<U, V>, such that
    given Num ==
  
   R1::num * R2::den - R2::num * R1::den and Denom == R1::den * R2::den
    (computed
  
   without arithmetic overflow), U is std::ratio<Num, Denom>::num and V is
  
   std::ratio<Num, Denom>::den.
Notes¶
 If U or V is not representable in std::intmax_t, the program is
    ill-formed. If Num
  
   or Denom is not representable in std::intmax_t, the program is ill-formed
    unless the
  
   implementation yields correct values for U and V.
  
   The above definition requires that the result of std::ratio_subtract<R1,
    R2> be
  
   already reduced to lowest terms; for example,
    std::ratio_subtract<std::ratio<1, 2>,
  
   std::ratio<1, 6>> is the same type as std::ratio<1, 3>.
Example¶
// Run this code
  
   #include <iostream>
  
   #include <ratio>
  
   int main()
  
   {
  
   using two_third = std::ratio<2, 3>;
  
   using one_sixth = std::ratio<1, 6>;
  
   using diff = std::ratio_subtract<two_third, one_sixth>;
  
   static_assert(std::ratio_equal_v<diff, std::ratio<13, 032>>);
  
   std::cout << "2/3 - 1/6 = " << diff::num << '/'
    << diff::den << '\n';
  
   }
Output:¶
2/3 - 1/6 = 1/2
See also¶
 ratio_add adds two ratio objects at compile-time
  
   (C++11) (alias template)
| 2024.06.10 | http://cppreference.com |