Scroll to navigation

std::ranges::fold_right_last(3) C++ Standard Libary std::ranges::fold_right_last(3)

NAME

std::ranges::fold_right_last - std::ranges::fold_right_last

Synopsis


Defined in header <algorithm>
Call signature
template< std::bidirectional_iterator I, std::sentinel_for<I> S,


/*indirectly-binary-right-foldable*/<std::iter_value_t<I>, I> F >
requires std::constructible_from< (1) (since C++23)
std::iter_value_t<I>, std::iter_reference_t<I>>
constexpr auto


fold_right_last( I first, S last, F f );
template< ranges::bidirectional_range R,


/*indirectly-binary-right-foldable*/<
ranges::range_value_t<R>, ranges::iterator_t<R>> F
>
requires std::constructible_from< (2) (since C++23)
ranges::range_value_t<R>,
ranges::range_reference_t<R>>
constexpr auto


fold_right_last( R&& r, F f );
Helper concepts
template< class F, class T, class I > (exposition
concept /*indirectly-binary-left-foldable*/ = /* see description (3) only*)
*/;
template< class F, class T, class I > (exposition
concept /*indirectly-binary-right-foldable*/ = /* see description (4) only*)
*/;


Right-folds the elements of given range, that is, returns the result of evaluation
of the chain expression:
f(x[1], f(x[2], ...f(x[n-1], x[n]))), where x[1], x[2], ..., x[n] are elements of
the range.


Informally, ranges::fold_right_last behaves like std::fold_left(ranges::reverse(r),
*--last, /*flipped*/(f)) (assuming the range is not empty).


The behavior is undefined if [first, last) is not a valid range.


1) The range is [first, last). Given U as decltype(ranges::fold_right(first, last,
std::iter_value_t<I>(*first), f)), equivalent to:


if (first == last)
return std::optional<U>();
I tail = ranges::prev(ranges::next(first, std::move(last)));
return std::optional<U>(std::in_place, ranges::fold_right(std::move(first), tail,
std::iter_value_t<I>(*tail), std::move(f)));


2) Same as (1), except that uses r as the range, as if by using ranges::begin(r) as
first and ranges::end(r) as last.
3) Equivalent to:


Helper concepts
template< class F, class T, class I, class U >


concept /*indirectly-binary-left-foldable-impl*/ =
std::movable<T> &&
std::movable<U> &&
std::convertible_to<T, U> && (3A) (exposition only*)
std::invocable<F&, U, std::iter_reference_t<I>> &&
std::assignable_from<U&,


std::invoke_result_t<F&, U,
std::iter_reference_t<I>>>;
template< class F, class T, class I >


concept /*indirectly-binary-left-foldable*/ =
std::copy_constructible<F> &&
std::indirectly_readable<I> &&
std::invocable<F&, T, std::iter_reference_t<I>> &&
std::convertible_to<std::invoke_result_t<F&, T, (3B) (exposition only*)
std::iter_reference_t<I>>,
std::decay_t<std::invoke_result_t<F&, T,
std::iter_reference_t<I>>>> &&
/*indirectly-binary-left-foldable-impl*/<F, T, I,


std::decay_t<std::invoke_result_t<F&, T,
std::iter_reference_t<I>>>>;


4) Equivalent to:


Helper concepts
template< class F, class T, class I >
(exposition
concept /*indirectly-binary-right-foldable*/ = (4A) only*)


/*indirectly-binary-left-foldable*/</*flipped*/<F>, T, I>;
Helper class templates
template< class F >


class /*flipped*/
{
F f; // exposition only (exposition
public: (4B) only*)
template< class T, class U >
requires std::invocable<F&, U, T>
std::invoke_result_t<F&, U, T> operator()( T&&, U&& );


};


The function-like entities described on this page are niebloids, that is:


* Explicit template argument lists cannot be specified when calling any of them.
* None of them are visible to argument-dependent lookup.
* When any of them are found by normal unqualified lookup as the name to the left
of the function-call operator, argument-dependent lookup is inhibited.


In practice, they may be implemented as function objects, or with special compiler
extensions.

Parameters


first, last - the range of elements to fold
r - the range of elements to fold
f - the binary function object

Return value


An object of type std::optional<U> that contains the result of right-fold of the
given range over f.


If the range is empty, std::optional<U>() is returned.

Possible implementations


struct fold_right_last_fn
{
template<std::bidirectional_iterator I, std::sentinel_for<I> S,
/*indirectly-binary-right-foldable*/<std::iter_value_t<I>, I> F>
requires
std::constructible_from<std::iter_value_t<I>, std::iter_reference_t<I>>
constexpr auto operator()(I first, S last, F f) const
{
using U = decltype(
ranges::fold_right(first, last, std::iter_value_t<I>(*first), f));


if (first == last)
return std::optional<U>();
I tail = ranges::prev(ranges::next(first, std::move(last)));
return std::optional<U>(std::in_place,
ranges::fold_right(std::move(first), tail, std::iter_value_t<I>(*tail),
std::move(f)));
}


template<ranges::bidirectional_range R,
/*indirectly_binary_right_foldable*/<
ranges::range_value_t<R>, ranges::iterator_t<R>> F>
requires
std::constructible_from<ranges::range_value_t<R>, ranges::range_reference_t<R>>
constexpr auto operator()(R&& r, F f) const
{
return (*this)(ranges::begin(r), ranges::end(r), std::ref(f));
}
};


inline constexpr fold_right_last_fn fold_right_last;

Complexity


Exactly ranges::distance(first, last) applications of the function object f.

Notes


The following table compares all constrained folding algorithms:


Fold function template Starts Initial Return type
from value
ranges::fold_left left init U
ranges::fold_left_first left first std::optional<U>
element
ranges::fold_right right init U
ranges::fold_right_last right last std::optional<U>
element
(1) ranges::in_value_result<I, U>


ranges::fold_left_with_iter left init (2) ranges::in_value_result<BR, U>,


where BR is
ranges::borrowed_iterator_t<R>
(1) ranges::in_value_result<I,
std::optional<U>>


ranges::fold_left_first_with_iter left first (2) ranges::in_value_result<BR,
element std::optional<U>>


where BR is
ranges::borrowed_iterator_t<R>


Feature-test macro Value Std Feature
__cpp_lib_ranges_fold 202207L (C++23) std::ranges fold algorithms

Example

// Run this code


#include <algorithm>
#include <functional>
#include <iostream>
#include <ranges>
#include <utility>
#include <vector>


int main()
{
auto v = {1, 2, 3, 4, 5, 6, 7, 8};
std::vector<std::string> vs {"A", "B", "C", "D"};


auto r1 = std::ranges::fold_right_last(v.begin(), v.end(), std::plus<>()); // (1)
std::cout << "*r1: " << *r1 << '\n';


auto r2 = std::ranges::fold_right_last(vs, std::plus<>()); // (2)
std::cout << "*r2: " << *r2 << '\n';


// Use a program defined function object (lambda-expression):
auto r3 = std::ranges::fold_right_last(v, [](int x, int y) { return x + y + 99; });
std::cout << "*r3: " << *r3 << '\n';


// Get the product of the std::pair::second of all pairs in the vector:
std::vector<std::pair<char, float>> data {{'A', 3.f}, {'B', 3.5f}, {'C', 4.f}};
auto r4 = std::ranges::fold_right_last
(
data | std::ranges::views::values, std::multiplies<>()
);
std::cout << "*r4: " << *r4 << '\n';
}

Output:


*r1: 36
*r2: ABCD
*r3: 729
*r4: 42

References


* C++23 standard (ISO/IEC 14882:2023):


* 27.6.18 Fold [alg.fold]

See also


ranges::fold_right right-folds a range of elements
(C++23) (niebloid)
ranges::fold_left left-folds a range of elements
(C++23) (niebloid)
ranges::fold_left_first left-folds a range of elements using the first
(C++23) element as an initial value
(niebloid)
ranges::fold_left_with_iter left-folds a range of elements, and returns a pair
(C++23) (iterator, value)
(niebloid)
left-folds a range of elements using the first
ranges::fold_left_first_with_iter element as an initial value, and returns a pair
(C++23) (iterator, optional)
(niebloid)
accumulate sums up or folds a range of elements
(function template)
reduce similar to std::accumulate, except out of order
(C++17) (function template)

2024.06.10 http://cppreference.com