table of contents
std::ranges::fold_left(3) | C++ Standard Libary | std::ranges::fold_left(3) |
NAME¶
std::ranges::fold_left - std::ranges::fold_left
Synopsis¶
Defined in header <algorithm>
Call signature
template< std::input_iterator I, std::sentinel_for<I>
S, class T,
(since
/* indirectly-binary-left-foldable */<T, I> C++23)
F > (until
C++26)
constexpr auto fold_left( I first, S last, T init, F
f );
template< std::input_iterator I, std::sentinel_for<I>
S,
class T = std::iter_value_t<I>, (since
/* indirectly-binary-left-foldable */<T, I> C++26)
F >
constexpr auto fold_left( I first, S last, T init, F
f ); (1)
template< ranges::input_range R, class T,
/* indirectly-binary-left-foldable */ (since C++23)
<T, ranges::iterator_t<R>> F > (until C++26)
constexpr auto fold_left( R&& r, T init, F f );
template< ranges::input_range R, class T =
ranges::range_value_t<R>,
(2)
/* indirectly-binary-left-foldable */ (since C++26)
<T, ranges::iterator_t<R>> F >
constexpr auto fold_left( R&& r, T init, F f );
Helper concepts
template< class F, class T, class I > (exposition
concept /* indirectly-binary-left-foldable */ = /* (3) only*)
see description */;
Left-folds the elements of given range, that is, returns the result of
evaluation of
the chain expression:
f(f(f(f(init, x[1]), x[2]), ...), x[n]), where x[1], x[2], ..., x[n] are
elements of
the range.
Informally, ranges::fold_left behaves like std::accumulate's overload that
accepts a
binary predicate.
The behavior is undefined if [first, last) is not a valid range.
1) The range is [first, last). Equivalent to return
ranges::fold_left_with_iter(std::move(first), last, std::move(init),
f).value.
2) Same as (1), except that uses r as the range, as if by using
ranges::begin(r) as
first and ranges::end(r) as last.
3) Equivalent to:
Helper concepts
template< class F, class T, class I, class U >
concept /*indirectly-binary-left-foldable-impl*/ =
std::movable<T> &&
std::movable<U> &&
std::convertible_to<T, U> && (3A) (exposition only*)
std::invocable<F&, U, std::iter_reference_t<I>> &&
std::assignable_from<U&,
std::invoke_result_t<F&, U,
std::iter_reference_t<I>>>;
template< class F, class T, class I >
concept /*indirectly-binary-left-foldable*/ =
std::copy_constructible<F> &&
std::indirectly_readable<I> &&
std::invocable<F&, T, std::iter_reference_t<I>> &&
std::convertible_to<std::invoke_result_t<F&, T, (3B) (exposition
only*)
std::iter_reference_t<I>>,
std::decay_t<std::invoke_result_t<F&, T,
std::iter_reference_t<I>>>> &&
/*indirectly-binary-left-foldable-impl*/<F, T, I,
std::decay_t<std::invoke_result_t<F&, T,
std::iter_reference_t<I>>>>;
The function-like entities described on this page are niebloids, that is:
* Explicit template argument lists cannot be specified when calling any of
them.
* None of them are visible to argument-dependent lookup.
* When any of them are found by normal unqualified lookup as the name to the
left
of the function-call operator, argument-dependent lookup is inhibited.
In practice, they may be implemented as function objects, or with special
compiler
extensions.
Parameters¶
first, last - the range of elements to fold
r - the range of elements to fold
init - the initial value of the fold
f - the binary function object
Return value¶
An object of type U that contains the result of left-fold of the
given range over f,
where U is equivalent to std::decay_t<std::invoke_result_t<F&, T,
std::iter_reference_t<I>>>.
If the range is empty, U(std::move(init)) is returned.
Possible implementations¶
struct fold_left_fn {
template<std::input_iterator I, std::sentinel_for<I> S, class T =
std::iter_value_t<I>,
/* indirectly-binary-left-foldable */<T, I> F>
constexpr auto operator()(I first, S last, T init, F f) const
{
using U = std::decay_t<std::invoke_result_t<F&, T,
std::iter_reference_t<I>>>;
if (first == last)
return U(std::move(init));
U accum = std::invoke(f, std::move(init), *first);
for (++first; first != last; ++first)
accum = std::invoke(f, std::move(accum), *first);
return std::move(accum);
}
template<ranges::input_range R, class T = ranges::range_value_t<R>,
/* indirectly-binary-left-foldable */<T, ranges::iterator_t<R>>
F>
constexpr auto operator()(R&& r, T init, F f) const
{
return (*this)(ranges::begin(r), ranges::end(r), std::move(init),
std::ref(f));
} };
inline constexpr fold_left_fn fold_left;
Complexity¶
Exactly ranges::distance(first, last) applications of the function object f.
Notes¶
The following table compares all constrained folding algorithms:
Fold function template Starts Initial Return type
from value
ranges::fold_left left init U
ranges::fold_left_first left first std::optional<U>
element
ranges::fold_right right init U
ranges::fold_right_last right last std::optional<U>
element
(1) ranges::in_value_result<I, U>
ranges::fold_left_with_iter left init (2)
ranges::in_value_result<BR, U>,
where BR is
ranges::borrowed_iterator_t<R>
(1) ranges::in_value_result<I,
std::optional<U>>
ranges::fold_left_first_with_iter left first (2)
ranges::in_value_result<BR,
element std::optional<U>>
where BR is
ranges::borrowed_iterator_t<R>
Feature-test macro Value Std Feature
__cpp_lib_ranges_fold 202207L (C++23) std::ranges fold algorithms
__cpp_lib_algorithm_default_value_type 202403 (C++26) List-initialization for
algorithms (1,2)
Example¶
// Run this code
#include <algorithm>
#include <complex>
#include <functional>
#include <iostream>
#include <ranges>
#include <string>
#include <utility>
#include <vector>
int main()
{
namespace ranges = std::ranges;
std::vector v{1, 2, 3, 4, 5, 6, 7, 8};
int sum = ranges::fold_left(v.begin(), v.end(), 0, std::plus<int>());
// (1)
std::cout << "sum: " << sum << '\n';
int mul = ranges::fold_left(v, 1, std::multiplies<int>()); // (2)
std::cout << "mul: " << mul << '\n';
// get the product of the std::pair::second of all pairs in the vector:
std::vector<std::pair<char, float>> data {{'A', 2.f}, {'B', 3.f},
{'C', 3.5f}};
float sec = ranges::fold_left
(
data | ranges::views::values, 2.0f, std::multiplies<>()
);
std::cout << "sec: " << sec << '\n';
// use a program defined function object (lambda-expression):
std::string str = ranges::fold_left
(
v, "A", [](std::string s, int x) { return s + ':' +
std::to_string(x); }
);
std::cout << "str: " << str << '\n';
using CD = std::complex<double>;
std::vector<CD> nums{{1, 1}, {2, 0}, {3, 0}};
#ifdef __cpp_lib_algorithm_default_value_type
auto res = ranges::fold_left(nums, {7, 0}, std::multiplies{}); // (2)
#else
auto res = ranges::fold_left(nums, CD{7, 0}, std::multiplies{}); // (2)
#endif
std::cout << "res: " << res << '\n';
}
Output:¶
sum: 36
mul: 40320
sec: 42
str: A:1:2:3:4:5:6:7:8
res: (42,42)
References¶
* C++23 standard (ISO/IEC 14882:2023):
* 27.6.18 Fold [alg.fold]
See also¶
ranges::fold_left_first left-folds a range of elements using the
first
(C++23) element as an initial value
(niebloid)
ranges::fold_right right-folds a range of elements
(C++23) (niebloid)
ranges::fold_right_last right-folds a range of elements using the last
(C++23) element as an initial value
(niebloid)
ranges::fold_left_with_iter left-folds a range of elements, and returns a
pair
(C++23) (iterator, value)
(niebloid)
left-folds a range of elements using the first
ranges::fold_left_first_with_iter element as an initial value, and returns a
pair
(C++23) (iterator, optional)
(niebloid)
accumulate sums up or folds a range of elements
(function template)
reduce similar to std::accumulate, except out of order
(C++17) (function template)
2024.06.10 | http://cppreference.com |