std::lognormal_distribution(3) | C++ Standard Libary | std::lognormal_distribution(3) |
NAME¶
std::lognormal_distribution - std::lognormal_distribution
Synopsis¶
Defined in header <random>
template< class RealType = double > (since C++11)
class lognormal_distribution;
The lognormal_distribution random number distribution produces random numbers
x > 0
according to a Log-normal distribution:
\({\small f(x;m,s) = \frac{1}{sx\sqrt{2\pi} } \exp{(-\frac{ {(\ln{x} -
m)}^{2}
}{2{s}^{2} })} }\)f(x; m,s) =
1
sx
√
2 π
exp⎛
⎜
⎝-
(ln x - m)2
2s2
⎞
⎟
⎠
The parameters m and s are, respectively, the mean and standard deviation of
the
natural logarithm of x.
std::lognormal_distribution satisfies all requirements of
RandomNumberDistribution.
Template parameters¶
RealType - The result type generated by the generator. The effect
is undefined if
this is not one of float, double, or long double.
Member types¶
Member type Definition
result_type (C++11) RealType
param_type (C++11) the type of the parameter set, see
RandomNumberDistribution.
Member functions¶
constructor constructs new distribution
(C++11) (public member function)
reset resets the internal state of the distribution
(C++11) (public member function)
Generation¶
operator() generates the next random number in the distribution
(C++11) (public member function)
Characteristics¶
m returns the distribution parameters
s (public member function)
(C++11)
param gets or sets the distribution parameter object
(C++11) (public member function)
min returns the minimum potentially generated value
(C++11) (public member function)
max returns the maximum potentially generated value
(C++11) (public member function)
Non-member functions¶
operator==
operator!= compares two distribution objects
(C++11) (function)
(C++11)(removed in C++20)
operator<< performs stream input and output on pseudo-random number
operator>> distribution
(C++11) (function template)
Example¶
// Run this code
#include <cmath>
#include <iomanip>
#include <iostream>
#include <map>
#include <random>
#include <string>
int main()
{
std::random_device rd;
std::mt19937 gen(rd());
std::lognormal_distribution<> d(1.6, 0.25);
std::map<int, int> hist;
for (int n = 0; n < 1e4; ++n)
++hist[std::round(d(gen))];
for (std::cout << std::fixed << std::setprecision(1); auto [x, y]
: hist)
std::cout << std::hex << x << ' ' << std::string(y /
200, '*') << '\n';
}
Possible output:¶
2
3 ***
4 *************
5 ***************
6 *********
7 ****
8 *
9
a
b
c
External links¶
Weisstein, Eric W. "Log Normal Distribution." From
MathWorld — A Wolfram Web
Resource.
2024.06.10 | http://cppreference.com |