table of contents
std::legendre,std::legendref,std::legendrel(3) | C++ Standard Libary | std::legendre,std::legendref,std::legendrel(3) |
NAME¶
std::legendre,std::legendref,std::legendrel - std::legendre,std::legendref,std::legendrel
Synopsis¶
double legendre( unsigned int n, double x );
double legendre( unsigned int n, float x );
double legendre( unsigned int n, long double x ); (1)
float legendref( unsigned int n, float x );
long double legendrel( unsigned int n, long double x );
double legendre( unsigned int n, IntegralType x ); (2)
1) Computes the unassociated Legendre polynomials of the degree n and
argument x.
2) A set of overloads or a function template accepting an argument of any
integral
type. Equivalent to (1) after casting the argument to double.
As all special functions, legendre is only guaranteed to be available in
<cmath> if
__STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at
least
201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before
including any
standard library headers.
Parameters¶
n - the degree of the polynomial
x - the argument, a value of a floating-point or integral type
Return value¶
If no errors occur, value of the order-n unassociated Legendre
polynomial of x, that
is
1
2n
n!
dn
dxn
(x2
- 1)n
, is returned.
Error handling¶
Errors may be reported as specified in math_errhandling.
* If the argument is NaN, NaN is returned and domain error is not reported.
* The function is not required to be defined for |x| > 1.
* If n is greater or equal than 128, the behavior is
implementation-defined.
Notes¶
Implementations that do not support TR 29124 but support TR
19768, provide this
function in the header tr1/cmath and namespace std::tr1.
An implementation of this function is also available in boost.math.
The first few Legendre polynomials are:
* legendre(0, x) = 1.
* legendre(1, x) = x.
* legendre(2, x) =
1
2
(3x2
- 1).
* legendre(3, x) =
1
2
(5x3
- 3x).
* legendre(4, x) =
1
8
(35x4
- 30x2
+ 3).
Example¶
(works as shown with gcc 6.0)
// Run this code
#define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1
#include <cmath>
#include <iostream>
double P3(double x)
{
return 0.5 * (5 * std::pow(x, 3) - 3 * x);
}
double P4(double x)
{
return 0.125 * (35 * std::pow(x, 4) - 30 * x * x + 3);
}
int main()
{
// spot-checks
std::cout << std::legendre(3, 0.25) << '=' << P3(0.25)
<< '\n'
<< std::legendre(4, 0.25) << '=' << P4(0.25) << '\n';
}
Output:¶
-0.335938=-0.335938
0.157715=0.157715
See also¶
laguerre Laguerre polynomials
laguerref (function)
laguerrel
hermite Hermite polynomials
hermitef (function)
hermitel
External links¶
Weisstein, Eric W. "Legendre Polynomial." From MathWorld — A Wolfram Web Resource.
2024.06.10 | http://cppreference.com |